Видео:КРУЧЕНИЕ ВАЛА. Касательные напряжения. Сопромат.Скачать
Крутящие моменты. Построение эпюры крутящих моментов
- Крутящий момент график крутящего момента На самом деле явление кручения испытывают многие конструктивные элементы, а именно трансмиссионный вал, вал двигателя и турбины, спиральная пружина, элемент пространственной структуры и т.д. Кручение
прямой балки происходит, когда она нагружена внешним крутящим моментом, который действует на плоскость, перпендикулярную продольной оси балки. Внешний крутящий момент обозначается MSK. Технические характеристики Н-м или кН-м при перекруте и внешних кручения. Характер деформации при кручении
балки во многом зависит от формы ее поперечного сечения. Кручение Людмила Фирмаль
стержней прямоугольного сечения или с поперечным сечением- G) M f500h m2 * 300 200N-M ——— ———- Семь сотен и семьдесят семьдесят семь С/J б) В м, ■(- Семь сотен и семьдесят семьдесят семь б) 4Л __ Четыре.————- T77g ГПТП^Р Рис 20.1 По форме каналов она существенно отличается от скручивания балки круглого сечения. В этой главе круглое поперечное сечение принимает только форму
прямого скручивания балки, то есть круга или кольца. Вначале, также при растяжении, внешний крутящий момент от заданного действия обретает характер распределения по оси крутящего момента штока. Определение крутящего момента. Раздел 202 основан на методе. Для удобства построения графика L1K им присваиваются знаки, при этом символ крутящего момента в любом сечении стержня численно
- равен алгебраической сумме внешних крутящих моментов, приложенных к остальной части стержня после его мысленного рассечения на две части. Согласимся с правилами следующих знаков АФК: крутящий момент l1k, когда смотришь на конец остальной балки, внутренний крутящий момент совпадает с ходом стрелки по часовой стрелке. Изменение крутящего момента по длине балки удобно изобразить в виде графика графика крутящего момента. Каждая ордината принятого масштабного графика MK равна
крутящему моменту, который эта ордината действует на ее поперечное сечение соответствующего стержня. В сечении, где к балке приложен внешний крутящий момент, вертикальная ось графика изменяется с скачком, равным значению этого момента. График MC строится вдоль участка, где граница приложена к внешнему крутящему моменту. В любом сечении в каждом сечении условие статического равновесия остальных частей выполнено в виде SAfK=O, из которого выведено значение внутреннего
крутящего момента. Например. Участок луча M(рис. 20.1, а) закреплены на Людмила Фирмаль
подшипниках B и C и нагружены крутящим моментом l/1= = 500N-m, M2=300N-m, M3=200N-M. Решение. В этом случае Луч имеет четыре секции: BD, DH, CT и TC. Предположим, что в подшипниках B и C отсутствует трение, и балка может свободно вращаться. Тогда отсутствует внутренний крутящий момент на двух крайних участках BD и TS. В сечении DH нарисуйте сечение 1 -/, перпендикулярное оси луча. О левой стороне остальных (рис. 20.1, 6) запишите уравнение статического равновесия SM2=-500+L1L=0, где Mk= = 500N-m. В отделении КТ будут вести 2-2 подразделения.
Остальные уравнения статического равновесия слева(рис. 20.1, в) записывается в таком виде: 2L12=-500+300+L1L1=0, где M / ej=200N-M. Из полученных формул Mki и Mk следует, что моменты DH и KT на участке постоянны, а график их изменения представлен прямой линией, параллельной оси стержня, и эти графики показаны на рисунке. 20.1, а.
Читайте также: Ремонт карданных валов красногорск
Видео:БАЛКА - 90 СТУДЕНТОВ САМОСТОЯТЕЛЬНО СТРОЯТ ЭПЮРЫ после просмотра этого видео!Скачать
Эпюры крутящих моментов
Крутящие моменты могут меняться вдоль оси бруса. После определения величин моментов по сечениям строим график-эпюру крутящих моментов вдоль оси бруса.
Крутящий момент считаем положительным, если моменты внешних пар сил направлены по часовой стрелке, в этом случае момент внутренних сил упругости направлен против часовой стрелки (рис. 26.2).
Порядок построения эпюры моментов аналогичен построению эпюр продольных сил. Ось эпюры параллельна оси бруса, значения моментов откладывают от оси вверх или вниз, масштаб построения выдерживать обязательно.
Примеры решения задач
Пример 1. На распределительном валу (рис. 26.3) установлены четыре шкива, на вал через шкив 1 подается мощность 12 кВт, которая через шкивы 2, 3, 4 передается потребителю; мощности распределяются следующим образом: Р2 = 8 кВт, Р3 = 3 кВт, Р4 = 1кВт, вал вращается с постоянной скоростью ω = 25 рад/с. Построить эпюру крутящих моментов на валу.
1. Определяем моменты пар сил на шкивах.
Вращающий момент определяем из формулы мощности при вращательном движении
Момент на шкиве 1 движущий, а моменты на шкивах 2, 3, 4 — моменты сопротивления механизмов, поэтому они имеют противоположное направление. Брус скручивается между движущим моментом и моментами сопротивления. При равновесии момент движущий равен сумме моментов сопротивления:
2. Определяем крутящие моменты в поперечных сечениях бруса с помощью метода сечений.
3. Строим эпюру крутящих моментов. Заметим, что скачок на эпюре всегда численно равен приложенному вращающему моменту.
Выбираем соответствующий масштаб.
Откладываем значения моментов, штрихуем эпюру поперек, обводим по контуру, записываем значения моментов (см. эпюру под схемой вала (рис. 26.3)). Максимальный крутящий момент на участке III Мкз = 320 Н*м.
Пример 2. Выбрать рациональное расположение колес на валу (рис. 26.5). m1 = 280 Н • м; т2 = 140 Н • м; т3 = 80 Н* м.
Примечание. Меняя местами колеса (шкивы) на валу, можно изменять величины крутящих моментов. Рациональным расположением является такое, при котором крутящие моменты принимают минимальные из возможных значения.
Читайте также: Кронштейны гребных валов это
Рассмотрим нагрузки на валу при различном расположении колес.
Из представленных вариантов наиболее рационально расположение шкивов в третьем случае, здесь значения крутящих моментов минимальны. Вывод: при установке шкивов желательно, чтобы мощность подавалась в середине вала и по возможности равномерно распределялась направо и налево.
Пример 3. Для бруса, изображенного на рис. 2.34, а, построить эпюру крутящих моментов.
Решение
1. Заданный брус имеет три участка I, II, III. Напомним, что границами участков являются сечения, в которых прилажены внешние (скручивающие) моменты.
В данном случае проще, применяя метод сечений, оставлять левую и отбрасывать правую часть бруса — это дает возможность не определять реактивный момент в заделке.
Проводим произвольное поперечное сечение на участке I и составляем уравнение равновесия для оставленной части бруса, изображенной отдельно на рис. 2.34, 6:
В любом сечении участка I крутящий момент имеет найденное значение M 1 z = т. Из уравнения равновесия для оставленной части значение M 1 z получилось со знаком плюс. Это указывает на то, что выбранное направление M 1 z соответствует действительному.
Эпюра крутящих моментов на этом участке — прямая, параллельная оси абсцисс. Согласно принятому правилу знаков М 1 я отрицателен, и ординаты эпюры откладываем вниз от ее оси.
2. Проводим произвольное поперечное сечение на участке II и составляем уравнение равновесия для оставленной части бруса, изображенной отдельно на рис. 2.34, в:
И в этом случае выбранное направление M II z соответствует действительному. В любом сечении участка II крутящий момент Mz II = 2m. Согласно принятому правилу знаков, Mz II положителен и ординаты эпюры откладываем вверх от ее оси.
3. Проводим произвольное поперечное сечение на участке III и составляем уравнение равновесия для оставленной части бруса, изображенной отдельно на рис. 2.34, г:
В любом сечении участка III Mz III = —Зт.
Эпюра крутящих моментов представлена на рис. 2.34, д.
При нагружении бруса сосредоточенными моментами эпюра всегда имеет такой же характер, как и в рассматриваемом случае: на отдельных участках она ограничена прямыми, параллельными оси абсцисс; в местах приложения внешних (скручивающих) моментов получаются скачки на величину этих моментов.
Пример 4. На вал насажены шкивы 1, 2, 3, 4 (рис. 2.35, а). Шкив 1 передает от источника энергии на вал мощность N1 = 5,2 кВт, а остальные шкивы снимают с вала и передают рабочим машинам мощности соответственно N2 = 1,5 кВт; N3 = 1,7 кВт; N4 = 2,0 кВт. Вал вращается с частотой п = 240 об/мин. Построить эпюру крутящих моментов.
При построении эпюры крутящих моментов потери в подшипниках не учитываются, поэтому сумма снимаемых с вала мощностей равна подводимой к нему мощности (Л^—N2+Nb+N4). В действительности потери имеют место, но их величина незначительна — не превышает 1—2% передаваемой мощности.
Читайте также: Компрессор 30 л мин 7 атм skyway торнадо
Вычислим внешние (скручивающие) моменты, приложенные к валу:
На рис. 2.35,6 показана расчетная схема вала. Вал имеет три участка I, II, III. Эпюра крутящих моментов начинается от середины шкива 1.
Эпюра крутящих моментов показана на рис. 2.35, в.
Поменяем местами шкивы 1 и 2 (рис. 2.36, а). Расчетная схема вала показана на рис. 2.36, б.
Эпюра крутящих моментов начинается от середины шкива 2.
Сравнивая эпюры крутящих моментов (см. рис. 2.35, б и 2.36, в), видим, что во втором случае максимальный крутящий момент меньше, чем в первом. Следовательно, второй вариант расположения ведущего шкива предпочтительнее.
Контрольные вопросы и задания
1. Какие деформации возникают при кручении?
2. Какие гипотезы выполняются при деформации кручения?
3. Изменяются ли длина и диаметр вала после скручивания?
4. Какие внутренние силовые факторы возникают при кручении?
5. Что такое рациональное расположение колес на валу?
6. Для заданного вала (рис. 26.6) выбрать соответствующую эпюру крутящих моментов (а, б, в), m1 = 40 Н • м; m2 = 180 Н • м; m0 = 280 Н • м.
7. В каком порядке рациональнее расположить шкивы на валу для уменьшения нагрузки на вал (рис. 26.7)?
Видео:Расчет вала на прочность и жесткость. Эпюра крутящих моментовСкачать
iSopromat.ru
Пример решения задачи на построение эпюры скручивающих моментов при кручении вала по силовым участкам методом сечений.
Задача
Построить эпюру крутящих моментов для следующей расчетной схемы вала:
На рассматриваемом валу можно выделить два силовых участка.
Границами участков являются сечения, в которых приложены скручивающие моменты.
Используя метод сечений и правило знаков при кручении, определяем величины крутящих моментов на I и II участках:
Следует отметить, что значения крутящего момента не зависят от того, правую или левую от проведенного сечения часть вала мы рассматриваем.
Например, для второго участка, рассматривая правую от сечения часть вала, получим:
По полученным значениям строится эпюра крутящих моментов:
Если к валу приложены только сосредоточенные скручивающие моменты, эпюра крутящего момента в пределах каждого участка вычерчивается прямыми, параллельными базовой линии.
В тех сечениях, где к валу приложены крутящие моменты mi, на эпюре T имеют место скачки, по модулю равные величине моментов mi.
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач
✔ Выполнение учебных работ
✔ Помощь на экзаменах
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
🎥 Видео
Построение эпюры крутящих моментовСкачать
Сопромат. Практическое занятие №1.4Скачать
Пример построения эпюры крутящего момета ЭТСкачать
КРУЧЕНИЕ. ЭПЮРЫ ЗАКРУЧИВАНИЯ. Углы поворота. СопроматСкачать
9.1 Расчет валов приводаСкачать
11. Кручение ( практический курс по сопромату )Скачать
Вот для чего нужно строить эпюры в сопромате!Скачать
Кручение валаСкачать
Прочность и жесткость валов. Часть 6: Эпюры моментов выходного вала (цилиндрическая передача).Скачать
Изгиб с кручениемСкачать
Построение эпюр поперечных сил и изгибающих моментов в балке.Скачать
Сопротивление материалов/ Изгиб. Определение опорных реакций, построение эпюр Q и M. (Перезапись)Скачать
Сопротивление материалов. Лекция: кручение круглого стержняСкачать
Кручение зажатого валаСкачать
Правило знаков при крученииСкачать
Определение усилий, напряжений и перемещений. СопроматСкачать