Эпюра вала при кручении

На этой странице приведен еще один пример решения задачи по Сопромату, в которой необходимо произвести расчет вала переменного сечения (ступенчатого), нагруженного крутящими моментами. По результатам расчетов необходимо подобрать размеры вала, а также определить максимальную деформацию вала на скручивание (угол закручивания).

Результаты расчетов оформлены эпюрами крутящих моментов, касательных напряжений и углов закручивания бруса.

Студентам технических специальностей ВУЗов в качестве методической помощи предлагаются к скачиванию готовые варианты контрольных работ по сопромату (прикладной механике). Представленные задания и примеры их решения предназначены, в частности, для учащихся Алтайского Государственного технического университета.
Варианты контрольных работ можно скачать в формате Word для ознакомления с порядком решения заданий, или для распечатывания и защиты (при совпадении вариантов).

Видео:КРУЧЕНИЕ ВАЛА. Касательные напряжения. Сопромат.Скачать

КРУЧЕНИЕ ВАЛА. Касательные напряжения. Сопромат.

Расчет вала

Условие задачи:

К стальному валу, состоящему из 4-х участков длиной l1…l4 приложено четыре сосредоточенных момента М1…М4 (см. рис. 1 ).

Эпюра вала при кручении

Требуется:

Построить эпюру крутящих моментов Мкр , подобрать диаметр вала из расчета на прочность, построить эпюру максимальных касательных напряжений τmax , построить эпюру углов закручивания φ вала и определить наибольший относительный угол закручивания вала.

Исходные данные:
Указания:

Вычертить схему вала в соответствии с исходными данными.
Знаки моментов в исходных данных означают: плюс – момент действует против часовой стрелки относительно оси Z , минус – по часовой стрелке (см. навстречу оси Z ). В дальнейшем значения моментов принимать по абсолютной величине.
Участки нумеровать от опоры.
Допускаемое касательное напряжение [ τ ] для стали принимать равным 100 МПа.

Решение:

1. Определим методом сечений значения крутящих моментов на каждом силовом участке от свободного конца вала.
Крутящий момент равен алгебраической сумме внешних моментов, действующих на вал по одну сторону сечения.

2. Подберем сечение вала из расчета на прочность при кручении по полярному моменту сопротивления для участка, где величина крутящего момента максимальная (без учета знака):

Так как для круглого сечения полярный момент равен: Wр = πD 3 /16 , то можно записать:

D ≥ 3 √ (16Мкр/π[τ]) ≥ 3(16×12,2×10 3 /3,14×[100×10 6 ]) = 0,0855 м или D ≥ 85,5 мм.

( Здесь и далее знак «√» означает квадратный корень из выражения )

В соответствии со стандартным рядом, предусмотренным ГОСТ 12080-66, принимаем диаметр вала D = 90 мм.

3. Определим угол закручивания для каждого участка вала по формуле:

где
G – модуль упругости 2-го рода; для стали G = 8×10 10 Па;
Ip – полярный момент инерции (для круглого сечения Iр = πD 4 /32 ≈ 0,1D 4 , м 4 ).
Произведение G×Iр = 8×10 10 ×0,1×0,094 ≈ 524880 Н×м 2 – жесткость сечения данного вала при кручении.

Расчитываем углы закручивания на каждом участке:

Читайте также: Отклонение от параллельности валы

4. Определяем углы закручивания сечений вала, начиная от жесткой заделки (опоры):

5. Определяем максимальное касательное напряжение на каждом силовом участке по формуле:

6. Наибольший относительный угол закручивания Θmax определим по формуле:

7. По результатам расчетов строим эпюры крутящих моментов Мкр , касательных напряжений τmax и углов закручивания φ (см. рис. 2).

Видео:Расчет вала на прочность и жесткость. Эпюра крутящих моментовСкачать

Расчет вала на прочность и жесткость. Эпюра крутящих моментов

Тема 2.4. Кручение

Под кручением понимается такой вид деформации, когда в поперечных сечениях бруса действует только крутящий момент Mk, (другое обозначение T, Mz), а остальные силовые факторы (нормальная и поперечная силы и изгибающие моменты) отсутствуют.

Или другое определение кручением называют деформацию, возникающую при действии на стержень пары сил, расположенной в плоскости, перпендикулярной к его оси (рис.1).

Кручение возникает в валах, винтовых пружинах, в элементах пространственных конструкций и т.п.

Деформация кручения наблюдается если прямой брус нагружен внешними моментами (парами сил M), плоскости действия которых перпендикулярны к его продольной оси

В чистом виде деформация кручения встречается редко, обычно присутствуют и другие внутренние силовые факторы (изгибающие моменты, продольные силы).

Стержни круглого или кольцевого сечения, работающие на кручение, называют валами.

Внешние крутящие моменты передаются на вал в местах посадки на него шкивов, зубчатых колес, там, где поперечная нагрузка смещена относительно оси вала.

Мы будем рассматривать прямой брус только в состоянии покоя или равномерного вращения. В этом случае алгебраическая сумма всех внешних скручивающих моментов, приложенных к брусу, будет равна нулю.

При расчете брусьев, испытывающий деформацию кручения, на прочность и жесткость при статическом действии нагрузки, надо решить две основные задачи. Это определение напряжений (от Mk), возникающих в брусе, и нахождение угловых перемещений в зависимости от внешних скручивающих моментов.

При расчете валов обычно бывает известна мощность, передаваемая на вал, а величины внешних скручивающих моментов, подлежат определению. Внешние скручивающие моменты, как правило, передаются на вал в местах посадки на него шкивов, зубчатых колес и т.п.

В ряде случаев величины внешних крутящих моментов определяются по величине потребляемой мощности и по скорости вращения вала. Если вал делает в минуту n оборотов (n- частота вращения, единицы измерения — об/мин.), то вращающий момент можно найти по формуле: Мвр=P/n,

эта формула дает значение момента в Н·м, если мощность выражена в Вт, а частота вращения n — об/мин.

§2. Построение эпюр крутящих моментов

Для определения напряжений и деформаций вала необходимо знать значения внутренних крутящих моментов Mk (Mz) в поперечных сечениях по длине вала. Диаграмму, показывающую распределение значений крутящих моментов по длине бруса, называют эпюрой крутящих моментов. Зная величины внешних скручивающих моментов и используя метод сечений, мы можем определить крутящие моменты, возникающие в поперечных сечениях вала.

Читайте также: Воздушный шланг для компрессора 16 25 мм армированный

В простейшем случае, когда вал нагружен только двумя внешними моментами (эти моменты из условия равновесия вала ΣMz=0 всегда равны друг другу по величине и направлены в противоположные стороны), как показано на рис. 1, крутящий момент Mz в любом поперечном сечении вала (на участке между внешними моментами) по величине равен внешнему моменту |M1|=|M2|.

Видео:Сопромат. Построение эпюр вала при кручении. Я в вк https://vk.com/id4682924Скачать

Сопромат. Построение эпюр вала при кручении. Я в вк https://vk.com/id4682924

iSopromat.ru

Эпюра вала при кручении

Кручением называется такой вид деформации бруса, при котором в его поперечных сечениях возникает только один внутренний силовой фактор – крутящий момент T.

Брусья, испытывающие кручение, принято называть валами.

Видео:Сопромат. Практическое занятие №1.4Скачать

Сопромат. Практическое занятие №1.4

Внутренний крутящий момент

Внутренние скручивающие моменты появляются под действием внешних крутящих моментов mi, расположенных в плоскостях, перпендикулярных к продольной оси бруса.

Скручивающие моменты передаются на вал в местах посадки зубчатых колес, шкивов ременных передач и т.п.

Эпюра вала при кручении

Величина крутящего момента в любом сечении вала определяется методом сечений:

т.е. крутящий момент численно равен алгебраической сумме скручивающих моментов mi, расположенных по одну сторону от рассматриваемого сечения.

Правило знаков внутренних скручивающих моментов:
Положительными принимаются внутренние моменты, стремящиеся повернуть рассматриваемую часть вала против хода часовой стрелки, при рассмотрении со стороны отброшенной части вала.

В технике наиболее широко используются валы круглого поперечного сечения.

Теория кручения круглых валов основана на следующих гипотезах:

  1. поперечное сечение, плоское до деформации вала, остается плоским и после деформации;
  2. радиусы, проведенные мысленно в любом поперечном сечении, в процессе деформации вала не искривляются.

Видео:КРУЧЕНИЕ. ЭПЮРЫ ЗАКРУЧИВАНИЯ. Углы поворота. СопроматСкачать

КРУЧЕНИЕ. ЭПЮРЫ ЗАКРУЧИВАНИЯ. Углы поворота. Сопромат

Напряжения при кручении

В поперечных сечениях вала при кручении имеют место только касательные напряжения.
Касательные напряжения, направленные перпендикулярно к радиусам, для произвольной точки, отстоящей на расстоянии ρ от центра, вычисляются по формуле:
Эпюра вала при кручении
где Iρ — полярный момент инерции.
Эпюра касательных напряжений при кручении имеет следующий вид:
Эпюра вала при кручении
Касательные напряжения меняются по линейному закону и достигают максимального значения на контуре сечения при ρ= ρmax:
Эпюра вала при кручении
Здесь:
Эпюра вала при кручении
— полярный момент сопротивления.
Геометрические характеристики сечений:
а) для полого вала:
Эпюра вала при кручении
Эпюра вала при кручении
б) для вала сплошного сечения (c=0)
Эпюра вала при кручении
в) для тонкостенной трубы (t 0,9)
Эпюра вала при кручении
где
Эпюра вала при кручении
— радиус срединной поверхности трубы.

Видео:Построение эпюры крутящих моментовСкачать

Построение эпюры крутящих моментов

Деформации

Деформации валов при кручении заключаются в повороте одного сечения относительно другого.

Угол закручивания вала на длине Z определяется по формуле:
Эпюра вала при кручении
Если крутящий момент и величина GIρ, называемая жесткостью поперечного сечения при кручении, постоянны, для участка вала длиной l имеем:
Эпюра вала при кручении
Угол закручивания, приходящийся на единицу длины, называют относительным углом закручивания:
Эпюра вала при кручении
Расчет валов сводится к одновременному выполнению двух условий:

  1. условию прочности:
    Эпюра вала при кручении
  2. условию жесткости:
    Эпюра вала при кручении

Для стальных валов принимается:

  • допускаемое касательное напряжение
    Эпюра вала при кручении
  • допускаемый относительный угол закручивания
    Эпюра вала при кручении

Используя условия прочности и жесткости, как и при растяжении – сжатии можно решать три типа задач:

Читайте также: Nissan primera p11 ремень генератора без компрессора

  1. проверочный расчет, заключающийся в проверке выполнения условий прочности и жесткости при известных значениях крутящего момента, размеров и материала вала.
  2. Проектировочный расчет, при котором вычисляются диаметры:
    Эпюра вала при кручении
    при этом берется большее из найденных значений, а затем принимается стандартное значение по ГОСТ.
  3. Определение грузоподъемности вала:
    • из условия прочности
      Эпюра вала при кручении
    • из условия жесткости
      Эпюра вала при кручении

Эпюра вала при кручении

При кручении, наряду с касательными напряжениями в поперечных сечениях, в соответствии с законом парности, касательные напряжения возникают и в продольных сечениях. Таким образом, во всех точках вала имеет место чистый сдвиг.

Главные напряжения σ1 = τ, σ3 = -τ наклонены под углом α=±45 о к образующей.

Потенциальная энергия упругой деформации определяется по формуле
Эпюра вала при кручении
или для участка вала при постоянном T и GIρ
Эпюра вала при кручении

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Видео:11. Кручение ( практический курс по сопромату )Скачать

11. Кручение ( практический курс по сопромату )

Пример построения эпюры крутящих моментов при кручении вала

Пусть прямолинейный стержень нагружен внешними сосредоточенными крутящими моментами Mкв1 = -30кН·м, Mкв2=50 кН·м, и распределенным моментом m1=10кН.

Реакции левой опоры можно не определять, т.к. в этом примере можно ограничиться рассмотрением лишь сил, приложенных к правым оставленным частям (справа от сечений).

Эпюра вала при кручении

Для заданного консольного стержня вычисления удобно вести, идя справа налево, начав их с 1–го сечения.

Проведем сечение 1. Определим крутящий момент в текущем сечении:

Проведем сечение 2. Отбросим левую часть, заменим ее действие крутящим моментом M к2 и составим уравнение равновесия в моментах относительно оси бруса. Из уравнения равновесия получаем выражение для крутящего момента в сечении 2:

M к2 = M к1 = M кв2 = 50 кНм

Проведем сечение 3, отбрасываем левую часть, составляем уравнение равновесия и получаем:

M к3 = M кв2 – m 1*4 = 50 – 10*4 = 10 кНм

Аналогично для сечения 4:

Также для сечения 5:

M к5= M к4-M кв1= 10 – 30 = -20 кНм

Для сечения 6:

По полученным значения строим эпюру крутящих моментов (см. рисунок).

Скачок на левом конце эпюры дает величину опорного момента (реактивного момента в заделке) M к6, так как реактивный момент – это внутреннее усилие, действующее в поперечном сечении, где соединены торец стержня и заделка.

Правила контроля правильности эпюр крутящих моментов

Для эпюр крутящих моментов характерны некоторые закономерности, знание которых позволяет оценить правильность построений.

  • Эпюры крутящих моментов всегда прямолинейные.
  • На участке, где нет распределенных моментов, эпюра M к – прямая, параллельная оси; а на участке с распределенными моментами – наклонная прямая.
  • Под точкой приложения сосредоточенного момента на эпюре M к будет скачок на величину этого момента.
  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала
    • Правообладателям
    • Политика конфиденциальности

    Механика © 2023
    Информация, опубликованная на сайте, носит исключительно ознакомительный характер


    📸 Видео

    Кручение валаСкачать

    Кручение вала

    Кручение. Часть 6 Жесткость валаСкачать

    Кручение. Часть 6  Жесткость вала

    Сопротивление материалов. Лекция: кручение круглого стержняСкачать

    Сопротивление материалов. Лекция: кручение круглого стержня

    Правило знаков при крученииСкачать

    Правило знаков при кручении

    Кручение. Часть 1 Общие сведенияСкачать

    Кручение. Часть 1  Общие сведения

    Кручение. Расчет составного вала кольцевого сечения.Скачать

    Кручение. Расчет составного вала кольцевого сечения.

    9.1 Расчет валов приводаСкачать

    9.1 Расчет валов привода

    Кручение зажатого валаСкачать

    Кручение зажатого вала

    Кручение. Построение эпюр крутящих моментов в сопротивлении материалов.Скачать

    Кручение. Построение эпюр крутящих моментов в сопротивлении материалов.

    БАЛКА - 90 СТУДЕНТОВ САМОСТОЯТЕЛЬНО СТРОЯТ ЭПЮРЫ после просмотра этого видео!Скачать

    БАЛКА - 90 СТУДЕНТОВ САМОСТОЯТЕЛЬНО СТРОЯТ ЭПЮРЫ после просмотра этого видео!

    Прочность и жесткость валов. Часть 6: Эпюры моментов выходного вала (цилиндрическая передача).Скачать

    Прочность и жесткость валов. Часть 6: Эпюры моментов выходного вала (цилиндрическая передача).

    ПЗ Часть 1 Построение эпюры крутящего моментаСкачать

    ПЗ Часть 1  Построение эпюры крутящего момента
Поделиться или сохранить к себе:
Технарь знаток