Если плоскость пересекает поверхность прямого кругового цилиндра

Авто помощник

Видео:Точка, линия на поверхности прямого кругового цилиндра. Сечение плоскостью наклонного цилиндра.Скачать

Точка, линия на поверхности прямого кругового цилиндра. Сечение плоскостью наклонного цилиндра.

Сечения цилиндра. Любая плоскость может пересекать поверхность прямого кругового цилиндра:

Любая плоскость может пересекать поверхность прямого кругового цилиндра:

по окружности, если плоскость сечения перпендикулярна его образующим (рис.30);

по двум образующим, если секущая плоскость параллельна оси цилиндра и отстоит от неё на расстоянии, которое меньше радиуса цилиндра (рис.31);

по эллипсу, если секущая плоскость наклонена к оси цилиндра и пересекает все его образующие (рис.32). Натуральная величина большой оси эллипса равна отрезку А2В2 следа секущей плоскости, заключённому между фронтальными очерковыми образующими цилиндра. Малая ось CD равна диаметру цилиндрической поверхности. Фронтальной проекцией фигуры сечения является отрезок А2В2, горизонтальной – окружность, профильной – эллипс. Для построения профильной проекции эллипса определяем достаточное количество промежуточных точек – 1, 2, 3 и 4.

Опорные точки А и В являются точками видимости на П2, т.к. расположены на фронтальном очерке поверхности, и одновременно экстремальными относительно плоскостей проекций П1 и П3. опорные точки С и D являются точками видимости на П3, поскольку расположены на профильном очерке, и экстремальными относительно фронтальной плоскости проекций.

Для того, чтобы найти натуральный размер эллипса, полученный в результате сечения цилиндра плоскостью, проводим параллельно фронтальной проекции плоскости сечения α ось Х. На эту ось переносим все точки сечения 1,2,3 и т.д., через которые проводим прямые перпендикулярные оси, и от этих точек откладываем расстояния, равные расстояниям от оси симметрии на горизонтальной проекции до точек окружности. Получим точки, принадлежащие фигуре сечения, т. е. эллипсу.

На рис.33 построены три проекции цилиндра, усечённого плоскостью β. Плоскость пересекает основание цилиндра по прямой, поэтому фигурой сечения является неполный эллипс. Большая ось эллипса определяется отрезком А2В2, малая CD равна диаметру цилиндра. Для наглядности плоский срез цилиндра показан на чертеже заштрихованным. Дано изображение натуральной величины фигуры сечения.

Видео:Построение линии пересечения поверхности цилиндра с проецирующей плоскостиСкачать

Построение линии пересечения поверхности цилиндра с проецирующей плоскости

Пересечение цилиндра проецирующей плоскостью

Если прямой круговой цилиндр рассечь плос­костью, параллельной его основаниям, то линия пересечения боковой поверхности с этой плоскостью будет окружность (рис. 282, а).

Если цилиндр рассечь наклонной плоскостью так, чтобы пересеклись все его образующие, то линия пересечения боковой поверхности с этой плоскостью будет эллипсом, величина и форма которого зависят от угла наклона секу­щей плоскости к плоскостям оснований ци­линдра (рис. 282, б).

Если плоскость пересекает поверхность прямого кругового цилиндра

Если цилиндр рассечь плоскостью, перпенди­кулярной к его основаниям, линия пересечения боковой поверхности с этой плоскостью будет прямоугольником (рис. 282, в).

Читайте также: Цилиндр для замка 30х50 с вертушкой

Если цилиндр рассечь наклонной плоско­стью так, что она пересечет основания и бо­ковую поверхность, то линия пересечения бу­дет частью эллипса, отсеченной двумя хордами оснований (рис. 282, г).

Если секущая плоскость пересечет одно ос­нование и часть боковой поверхности, то ли­ния пересечения боковой поверхности с этой плоскостью будет частью эллипса отсеченного одной хордой основания (рис. 282, д).

Видео:Построение линии пересечения поверхности конуса с проецирующей плоскостьюСкачать

Построение линии пересечения поверхности конуса с проецирующей плоскостью

Пересечение цилиндра плоскостью

Линией пересечения поверхности цилиндра плоскостью может быть окружность, две образующие, эллипс.

Пример 1. Построить линию пересечения цилиндра плоскостью α(fh) (рис. 97).

Если плоскость пересекает поверхность прямого кругового цилиндраЕсли плоскость пересекает поверхность прямого кругового цилиндра

Линией пересечения прямой круговой цилиндрической поверхности плоскостью общего положения является эллипс. Данная цилиндрическая поверхность является горизонтально-проецирующей, так как ее образующие перпендикулярны горизонтальной плоскости проекций. Следовательно, линия пересечения, как принадлежащая такой поверхности, на горизонтальную плоскость проекций проецируется в виде очерка этой поверхности, т. е. в виде окружности. На фронтальную плоскость проекций линия пересечения проецируется в виде эллипса.

Точки эллипса построены по принадлежности их плоскости α(hf) при помощи фронталей. Фронтальные проекции точек С и K отделяют видимую часть эллипса от невидимой части (рис. 98).

Если плоскость пересекает поверхность прямого кругового цилиндра

Пример 2. Построить линию пересечения наклонного цилиндра с фронтально-проецирующей плоскостью ψ( ψ2) (рис. 99).

Если плоскость пересекает поверхность прямого кругового цилиндра

Линией пересечения плоскости ψ с поверхностью цилиндра будет эллипс. Фронтальная проекция эллипса совпадает с фронтальной проекцией плоскости ψ2.

Горизонтальную проекцию эллипса построим по точкам. Определяем проекции характерных точек, находящихся на очерковых образующих.

Это проекции точек А‘, В‘, С‘, D‘ (рис. 100). Затем отмечаем две произвольные точки 1‘ и 2‘, принадлежащие образующим цилиндра 1 и 2 и плоскости ψ, а также точки 3 и 4. Полученные точки соединяем плавной кривой с учетом видимости. Точки 1′1, 2′1, В’1, С’1, D ‘1 принадлежат видимым образующим, следовательно они видимы. На очерковых образующих в точках С’1 и D ‘1 меняется видимость, т. е. эллипс становится невидимым (рис. 101).

Если плоскость пересекает поверхность прямого кругового цилиндраЕсли плоскость пересекает поверхность прямого кругового цилиндра

Если плоскость пересекает поверхность прямого кругового цилиндраЕсли плоскость пересекает поверхность прямого кругового цилиндра

Пересечение пирамиды плоскостью

Линия пересечения поверхности многогранника плоскостью будет плоская ломаная линия,состоящая из звеньев прямых.

Пример 1. Построить линию пересечения пирамиды фронтально-проецирующей плоскостью α(α2) (рис. 102).

Если плоскость пересекает поверхность прямого кругового цилиндраЕсли плоскость пересекает поверхность прямого кругового цилиндра

Фронтально-проецирующая плоскость пересекает основание пирамиды АВС в точках 3 и 4. Ребра SА и SB плоскость пересекает в точках 1 и 2 соответственно. Строим проекции точек 1, 2,3 и 4 и соединяем их горизонтальные проекции с учетом видимости. Грань ВSС невидима относительно плоскости проекций П1, следовательно, прямая 21 31 невидима (рис. 103).

Пример 2. Построить линию пересечения пирамиды плоскостью α(fh) (рис. 104).

Читайте также: Прямой круговой цилиндр это фигура

Если плоскость пересекает поверхность прямого кругового цилиндра

Линией пересечения трехгранной пирамиды с плоскостью будет треугольник,точки которого принадлежат ребрам пирамиды. Поскольку ребро SA является профильной прямой задачу целесообразно решать при помощи дополнительного ортогонального проецирования.

Преобразуем плоскость α(hf) из общего положения в частное, для этого построим дополнительную ортогональную проекцию плоскости α на плоскость ей перпендикулярную. П4^α и П41 (рис. 105). Проводим ось х14 ^ h1 и строим дополнительную проекцию плоскости и пирамиды.

Если плоскость пересекает поверхность прямого кругового цилиндра

На фронтали отмечаем произвольную точку 1, строим дополнительную проекцию 14, горизонталь спроецируется в точку. Плоскость спроецируется в прямую α4. Строим также дополнительную ортогональную проекцию пирамиды. На пересечении с проекциями ребер пирамиды отмечаем дополнительные проекции точек М4, N4, K4 (рис. 106).

Если плоскость пересекает поверхность прямого кругового цилиндра

Затем находим горизонтальные и фронтальные проекции этих точек и соединяем их с учетом видимости (рис. 107). Грань АSC не видима относительно плоскости проекций П2, прямая K 2 М2 не видима.

Если плоскость пересекает поверхность прямого кругового цилиндра

.

Дата добавления: 2019-09-13 ; просмотров: 904 ; Мы поможем в написании вашей работы!

Видео:РТ_ПБ_61.1) Построить проекции линии пересечения цилиндра плоскостью частного положения.Скачать

РТ_ПБ_61.1) Построить проекции линии пересечения цилиндра плоскостью частного положения.

Пересечение поверхностей плоскостями

Форму деталей часто образуют срезом или вырезом части ма­териала плоскостями из исходных тел — заготовок, ограничен­ных криволинейными поверхностями. При этом возникает необходимость построения на чертеже проекций линии пересече­ния поверхности плоскостью. Такие же линии строят на чертежах деталей, поверхности которых ограничены пересекающимися между собой участками плоскости и поверхности.

В случае пересечения линейчатой поверхности плоскостью линия пересечения может быть кривой или прямой.

Для построения линии пересечения линейчатой поверхности плоскостью в общем случае строят точки пересечения прямоли­нейных образующих поверхности с секущей плоскостью, т. е. на­ходят точки пересечения прямой с плоскостью. Искомую кривую проводят через эти точки.

Для построения линии пересечения линейчатой поверхнос­ти с плоскостью в общем случае применяют вспомогательные секущие плоскости. Точки искомой линии определяются в пе­ресечении линий, по которым вспомогательные секущие плос­кости пересекают данные поверхность и плоскость. Примеры применения вспомогательных плоскостей рассмотрены ниже.

При подборе вспомогательных плоскостей надо стремиться к упрощению построений. Если секущая плоскость — плоскость частного положения, то задача упрощается, так как одна проекция линии пересечения плоскости с кривой поверхностью уже имеется и совпадает со следом секущей плоскости. Построение недостающих проекций линии пересечения сводится к построению недостающих проекций точек на поверхности по заданным проекциям этих точек на одной из проекций поверхности.

Пересечение цилиндрической поверхности плоскостью.Для построения линии пересечения цилиндрической поверхности плоскостью в общем случае находят точки пересечения образую­щих с секущей плоскостью. При необходимости не исключается применение и вспомогательных секущих плоско­стей, пересекающих поверхность и плоскость.

Читайте также: Может ли повести чугунный блок цилиндров от перегрева

Заметим, что любую цилиндрическую поверхность плоскость, расположенная параллельно образующей этой поверхности, пере­секает по прямым линиям (образующим).

Вид линии, образованной при пересечении плоскостью прямого кругового цилиндра, определяется положением плоскости относительно оси. Эта линия — окружность, если плоскость перпендикулярна оси; две прямые (проекции 1’2′ и 3’4′ на рисунке 75) или одна прямая (касатель­ная), если плоскость параллельна оси (след Pw); эллипс (1—2—3—4 на рисунке 76), если плоскость располо­жена под углом к оси.

Образование выреза на цилинд­ре двумя плоскостями Р (Pv) || W и T(TW) || V показано на рисунке 76.

Если плоскость пересекает поверхность прямого кругового цилиндраЕсли плоскость пересекает поверхность прямого кругового цилиндраЕсли плоскость пересекает поверхность прямого кругового цилиндра
Рисунок 75Рисунок 76Рисунок 77

Цилиндр с наклонным срезом.Рассмотрим построение чертежа ци­линдра со срезом проецирующей плоскостью под некоторым углом к его оси (не равным 0° и 90°), нату­ральной величины среза (рисунок 78).

Если плоскость пересекает поверхность прямого кругового цилиндра

Ось цилиндра и вся цилиндричес­кая поверхность перпендикулярны плоскости Н. Следовательно, все точ­ки цилиндрической поверхности, в том числе и линия пересечения ее с плоскостью Р (Pv) проецируются на плоскость Н в окружность. На ней от­мечают горизонтальные проекции то­чек 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 и 12 эллипса, расположив их равномер­но по окружности. В проекционной связи строят фронтальные проекции 1′, 2′, 3′, 4′, 5′, 6′, 7′, 8′, 9′, 10′, 11′ и 12′ отмеченных точек на фронтальном следе РV, се­кущей плоскости. Профильные проекции тех же точек строят по их горизонтальной и фронтальной проекциям на линиях связи.

Профильная проекция линии пересечения цилиндра с се­кущей плоскостью – эллипс, большая ось 10″4″ которого в данном случае равна диаметру цилиндра, а малая 1″7″ — про­фильная проекция отрезка 1—7.

Натуральный вид фигуры сечения цилиндра плоскостью Р построен способом перемены плоскостей проекций на плоско­сти S, перпендикулярной плоскости V.

Пересечение конической поверхности плоскостью.При пересечении конической поверхности вращения плос­костью получаются различные линии — прямые, замкнутые кривые — окружности и эллипсы, незамкнутые кривые — па­раболы и гиперболы, а также точка. Вид указанных линий определяется положением секущей плоскости относительно вершины конической поверхности и соотношением между ве­личинами углов наклона секущей плоскости и образующей ко­нической поверхности к ее оси.

Если плоскость пересекает поверхность прямого кругового цилиндра

Если секущая плоскость Р (Pv) проходит через вершину (рисунок 79, а), то пересечение плоскости с конической поверх­ностью в зависимости от угла α наклона плоскости к оси по­верхности образует:

📽️ Видео

Построение линии пересечения поверхности пирамиды с проецирующей плоскостьюСкачать

Построение линии пересечения поверхности пирамиды с проецирующей плоскостью

Начертательная геометрия. Пересечение прямых с поверхностями вращения. Задача 53гСкачать

Начертательная геометрия. Пересечение прямых с поверхностями вращения. Задача 53г

Лекция #13Скачать

Лекция #13

Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)Скачать

Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)

Точка встречи прямой с поверхностью конусаСкачать

Точка встречи прямой с поверхностью конуса

Начертательная геометрия_18_Сечение цилиндра проецирующей плоскостьюСкачать

Начертательная геометрия_18_Сечение цилиндра проецирующей плоскостью

ПЕРЕСЕЧЕНИЕ ПРЯМОЙ ЛИНИИ С ПОВЕРХНОСТЬЮ КОНУСА. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯСкачать

ПЕРЕСЕЧЕНИЕ ПРЯМОЙ ЛИНИИ С ПОВЕРХНОСТЬЮ КОНУСА. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ

Построение линии пересечения поверхности шара с проецирующей плоскостиСкачать

Построение линии пересечения поверхности шара с проецирующей плоскости

2 6 1 сечение конуса плоскостьюСкачать

2 6 1 сечение конуса плоскостью

Лекция 12. Пересечение поверхностей метод плоскостейСкачать

Лекция 12. Пересечение поверхностей метод плоскостей

Линия пересечения двух поверхностей вращения (Метод вспомогательных сфер)Скачать

Линия пересечения двух поверхностей вращения (Метод вспомогательных сфер)

Лекция #14Скачать

Лекция #14

Линия пересечения поверхностей конуса и сферы (метод секущих плоскостей)Скачать

Линия пересечения поверхностей конуса и сферы (метод секущих плоскостей)

Построить сечение цилиндра с плоскостью общего положения.Скачать

Построить сечение цилиндра с плоскостью общего положения.

Построение точек встречи прямой с поверхностью конусаСкачать

Построение точек встречи прямой с поверхностью конуса
Поделиться или сохранить к себе:
Технарь знаток