Фиксация валов в осевом направлении

Однако применять для фиксации подшипников качения стопорные пружинные кольца возможно только с учетом допускаемой для них осевой нагрузки.

Фиксация подшипников с коническим отверстием

Подшипники с коническим посадочным отверстием применяются взамен подшипников с цилиндрическим отверстием, когда требуется облегчить монтаж-демонтаж, в особенности для крупногабаритных и/или тяжелонагруженных подшипников. Однако не могут воспринимать значительные осевые силы, направленные в сторону большего диаметра конуса, поскольку это может привести к защемлению тел качения.

Подшипники с коническим посадочным отверстием устанавливаются:

либо непосредственно на вал – для лучшего центрования вала, но требуется более точная обработка посадочной поверхности на вале и в целом усложняется технология изготовления вала;

Подшипники с коническим отверстием, устанавливаемые непосредственно на конической шейке вала, обычно удерживаются на валу при помощи стопорной гайки (рисунок 5 , а ) или стопорной гайки на разъемном кольце с наружной резьбой, устанавливаемой в канавку вала, которое фактически является регулируемым буртиком (рисунок 5 , б ).

Фиксация валов в осевом направлении

Фиксация валов в осевом направлении

а — фиксация на валу при помощи стопорной гайки ,

б — фиксация на валу при помощи стопорной гайки на разъемном кольце с наружной резьбой, устанавливаемой в канавку вала

Рисунок 5 — Подшипники с коническим отверстием, устанавливаемые непосредственно на конической шейке вала

Стяжная втулка (рисунок 6) используются для легкого и быстрого монтажа подшипников с коническим отверстием на цилиндрические посадочные места ступенчатых валов. Она запрессовывается в отверстие подшипника, который упирается в заплечик вала или аналогичную неподвижную деталь. Стяжная втулка фиксируется на валу при помощи гайки и стопорной шайбы.

Фиксация валов в осевом направлении

Видео:Лекция «Валы и оси. Их опоры»Скачать

Лекция «Валы и оси. Их опоры»

Рисунок 6 — Подшипник с коническим отверстием, устанавливаемый на вал при помощи стяжной втулки

Закрепительная втулка также используется для фиксации подшипника на гладких (рисунок 7 , а ) и ступенчатых валах , но при этом подшипниковая опора имеет меньшие осевые размеры , чем в случае со стяжной втулкой.

Фиксация валов в осевом направлении

Фиксация валов в осевом направлении

а — на гладком вале , б — на ступенчатом вале

Рисунок 7 — Подшипники с коническим отверстием, устанавливаемые на вал при помощи закрепительной втулки

При использовании закрепительной втулки на ступенчатом валу стопорная гайка фиксирует положение подшипника относительно втулки, при этом между заплечиком вала и внутренним кольцом подшипника с другой стороны вставляется распорная втулка (рисунок 7 , б ).

Сайт содержит информацию о продукции компаний NTN-SNR Roulements (до 2010 г. называлась SNR Roulements ) и NTN, а также их партнеров: подшипники, ремонтные комплекты из подшипников и других компонентов, подшипниковые узлы, сервисные продукты .

Л юбое цитирование и иное использование данных материалов возможно только со ссылкой на сайт snr.com.ru и исключительно для рекламирования либо распространения продукции NTN-SNR. Подробнее в » Правовой информации » .

Страницы оптимизированы для просмотра Internet Explorer версии 6.х и выше

Читайте также: Сальник первичного вала кпп лада веста

Конструкции фиксаторов

Фиксация валов в осевом направлении

Фиксаторы применяют для стопорения детали, движущейся относительно другой детали в прямолинейных направляющих или вращающейся относительно последней на оси.

Видео:Что такое дуплексирование?Скачать

Что такое дуплексирование?

Фиксация может быть бесступенчатой — с остановкой подвижной детали в любом положении, или ступенчатой — с остановкой через заданные интервалы.

Фиксация может быть упругой или жесткой. В первом случае фиксатор удерживает деталь с определенной силой (обычно небольшой). Для перевода детали из одного положения в другое требуется преодоление этой силы. Во втором случае фиксатор вводится в гнезда, расположенные на неподвижной детали, и держит подвижную деталь жестко. Для перевода детали из одного положения в другое нужно предварительно вывести фиксатор из гнезда.

Фиксация валов в осевом направлении

Простейший вид упругого фиксатора — шарик, заложенный в цилиндрическое отверстие в одной из деталей и нагруженный пружиной (рис. 404). Под действием пружины шарик заскакивает в гнездо, проделанное в другой детали, и держит деталь в этом положении с силой, пропорциональной натяжению пружины и углу наклона стенок гнезда. Для перемещения детали в другое положение необходимо приложить усилие в направлении перемещения, достаточное для сжатия пружины и вывода шарика из гнезда.

В конструктивном отношении шариковый фиксатор обладает рядом недостатков. Во избежание заклинивания шарик должен быть погружен в отверстие настолько, чтобы при крайнем положении его центр не доходил до кромок отверстия на расстояние (а) (рис. 404, II), что ограничивает глубину фиксирующего гнезда. Центрирование пружины на шарике нежесткое. Трудно зафиксировать шарик от выпадения из отверстия при разборке соединения.

Фиксация валов в осевом направлении

Такие недостатки не присущи цилиндрическим фиксаторам со сферической рабочей поверхностью (рис. 405, I, II). Задача фиксации плунжера в продольном направлении легко решается, например, способом, изображенным на рис. 405, II.

Фиксация валов в осевом направлении

В конструкции на рис. 406, I фиксатор скользит по плоской поверхности. Эта схема применяется для бесступенчатой фиксации. Фиксатор в данном случае играет роль тормоза; деталь удерживается силой трения фиксатора по плоской поверхности.

В конструкции на рис. 406, II гнездо сферическое. Эта схема нерациональна во многих отношениях. Во-первых, изготовление сферического гнезда затруднительно, во-вторых, сила фиксации неопределенна, она зависит от того, в какой точке сферы происходит касание фиксатора и гнезда, т. е. зависит от точности изготовления охватывающей и охватываемой сфер. В конструкции (рис. 406, III) с гнездом, имеющим диаметр, больший диаметра сферы фиксатора, фиксация положения детали нежесткая. Лучше конструкции с коническим гнездом (рис. 406, IV—VII). Изменяя угол конуса, можно регулировать силу фиксации, т. е. силу, с которой фиксатор держит деталь при полном погружении сферы в гнездо.

Сила, необходимая для срывания с фиксатора, определяется из соотношения T ≈ Q/tg (α/2), где Q — сила затяжки пружины; α — угол конуса гнезда (рис, 406, VII). При уменьшении угла конуса до определенного значения соединение приобретает способность самоторможения; фиксация становится жесткой.

На рис. 406, VIII, IX изображены случаи жесткой фиксации заходом цилиндрической части фиксатора в цилиндрическое гнездо.

Фиксация валов в осевом направлении

На рис. 407, I—IX показаны цилиндрические и цилиндроконические фиксаторы. Конические фиксаторы обеспечивают более точную фиксацию, чем сферические и цилиндрические. При перемещении детали, несущей фиксатор, относительно неподвижной детали, на конической поверхности фиксатора возникает стремящаяся поднять фиксатор сила (рис. 408)

Видео:восстановление вала при помощи loctite 3473Скачать

восстановление вала при помощи loctite 3473

Читайте также: Размеры коленчатых валов хонда

Фиксация валов в осевом направлении

где Q — сила пружины, нагружающей фиксатор; α/2 — половина центрального угла конуса.

Фиксация валов в осевом направлении

Сила Р вызывает в крайних точках направляющих фиксатора реактивные силы

Фиксация валов в осевом направлении

Подъему фиксатора противодействуют силы трения N1f и N2f (где f —коэффициент трения), а также осевая составляющая силы трения Рf, возникающая в точке приложения силы Р и равная P·f·cos α/2.

Фиксация валов в осевом направлении

Подставив в это уравнение значения N1 и N2 из выражений (132) и (133), получим

Фиксация валов в осевом направлении

Это выражение определяет предельный угол α, при котором еще возможен подъем фиксатора. При меньших значениях угла α соединение получается самотормозящим.

Для фиксаторов с небольшим вылетом конуса относительно направляющей отношение L/l обычно равно 1,2—1,3. Коэффициент трения f можно принять равным 0,1.

Подставив эти значения в выражение (134), получим tg α/2 = 0,24—0,26, откуда α/2 ≈ 15° и угол при вершине конуса α ≈ 30°.

В приведенных выше соотношениях не учтены реактивные силы трения в направляющих детали, несущей фиксатор. Если деталь поворотная, то это сила трения на оси поворота детали, равная f·P· cos α/2 и создающая на оси фиксатора силу, противодействующую повороту, равную f·Р·r·(cos α/2)/R, где r — радиус оси поворота, R — расстояние от фиксатора до оси поворота. Если деталь, несущая фиксатор, движется прямолинейно, то это — силы трения, противодействующие прямолинейному перемещению детали и зависящие от конструкции и расположения направляющих. Из-за наличия этих дополнительных сил самоторможение практически наступает уже при центральном угле конуса α = 35 —40°.

Видео:Камри 20-25 двигатель 5S-FE. Шум балансировочного вала, причина.Скачать

Камри 20-25 двигатель 5S-FE. Шум балансировочного вала, причина.

Однако, учитывая возможные колебания коэффициента трения, следует для уверенного самоторможения принимать значения α 60°. Те же соотношения справедливы и для сферических фиксаторов (в данном случае α — центральный угол конического отверстия, в которое входит сфера фиксатора).

Фиксация валов в осевом направлении

Конструктивные разновидности фиксаторов приведены на рис. 409. На рис. 409, I—V показаны шариковые фиксаторы; на рис 409, II — фиксатор с регулировкой силы затяжки пружины.

Выпадение шарика из отверстия предупреждают подвальцовкой кромок отверстия (рис. 409, III) в детали (если деталь выполнена из пластичного металла) или в промежуточном корпусе из пластичного металла (рис. 409, IV, V).

Конструкции, изображенные на рис 409, IV, V — агрегатированные: фиксатор устанавливается на деталь в сборе как отдельный узел.

На рис. 409, VI—XIII показаны цилиндросферические фиксаторы. Конструкции на рис. 409, VII—IX — агрегатированные. В конструкции на рис. 409, IX фиксатор застрахован от выпадения цилиндрическим штифтом, пропущенным через отверстия в корпусе и окна в стержне фиксатора.

На рис. 409, X—XIV показаны цилиндрические фиксаторы для жесткой фиксации. Обязательны конус-искатель на цилиндре и заходная фаска в гнезде. Как и во всякой конструкции с жесткой фиксацией, должны быть предусмотрены средства извлечения фиксатора из гнезда.

На рис. 409, XV—XVII изображены цилиндроконические фиксаторы; конструкция на рис. 409, XVII — агрегатированная.

Клиновой фиксатор (рис. 409, XVIII), входящий в треугольную прорезь детали, должен быть застрахован от проворачивания в отверстии. В конструкции фиксатор удерживается от поворота лысками на хвостовике, пропущенном через фигурное отверстие в корпусе.

Читайте также: Сальник вторичного вала кпп газ 3302

Фиксация валов в осевом направлении

На рис. 410 показаны примеры фиксации втулок на валах. В конструкциях на рис. 410, I, II фиксация упругая, в конструкциях на рис. 410, III—VI — жесткая. В случае жесткой фиксации должны быть предусмотрены отверстия для утопления фиксаторов при разборке соединения.

В конструкциях на рис. 410, I—IV втулка фиксируется только в осевом направлении заходом фиксаторов в кольцевую выточку и имеет свободу вращения относительно вала; в конструкциях на рис. 410, V, VI фиксаторы заходят в отверстие втулки; втулка зафиксирована в осевом и угловом направлениях.

В конструкциях, подобных изображенным на рис. 410, IV, V, желательно упорные буртики фиксаторов выполнять по сфере диаметром, равным диаметру внутренней полости вала, для обеспечения надежного прилегания буртиков к стенкам полости.

Видео:Тойота Ипсум Балансировочный валСкачать

Тойота Ипсум Балансировочный вал

Фиксация валов в осевом направлении

Концентричные цилиндрические детали часто фиксируют в осевом направлении относительно друг друга разными пружинными кольцами. Кольцо устанавливается в выточку наружной детали (рис. 411, I) и при введении одной детали в другую заскакивает в кольцевую выточку вала Возможна и обратная схема; кольцо устанавливается в выточку вала (рис. 411, II) и заскакивает в выточку наружной детали.

Фиксация валов в осевом направлении

Для надежного действия фиксатора необходимо, чтобы в первом случае внутренний диаметр d1 кольца в свободном состоянии (рис. 412, I) был несколько меньше внутреннего диаметра выточки на валу. В рабочем состоянии кольцо должно несколько утопать в выточке наружной детали (величина а, рис. 412, III).

Фиксация валов в осевом направлении

Во втором случае наружный диаметр D1 кольца в свободном состоянии (рис. 413, I) должен быть несколько больше наружного диаметра D2 выточки в корпусе. В рабочем состоянии кольцо должно несколько утопать в выточке вала (величина а, рис. 413, III).

Фиксация валов в осевом направлении

Фиксация кольцами круглого сечения — упругая. При необходимости жесткой фиксации применяют кольца прямоугольного сечения (рис. 414, I, II, III).

При кольцах с биконической поверхностью (рис. 415, I, II, III) фиксация может быть в зависимости от угла конуса упругой или жесткой.

Фиксация валов в осевом направлении

На рис. 416 изображены типовые конструкции фиксирующих поворотных рукояток. В конструкции на рис. 416, I фиксирующий штырь (а), скользящий во втулке (б), укрепленной на рукоятке (в), заходит в конические отверстия на неподвижном лимбе (г). Для выхода фиксатора из отверстия необходимо оттянуть ручку (д), после чего фиксатор может быть установлен в другое отверстие лимба.

Фиксация валов в осевом направлении

Удобнее в обращении конструкция на рис. 416, II, где фиксирующий штырь соединен с ручкой (д) многозаходной резьбой. Вывод фиксатора из отверстия лимба осуществляется поворотом ручки (д) вокруг оси.

На рис. 416, III изображена рукоятка с бесступенчатой фиксацией. В этом случае фиксирующий штырь перемещается в пазу лимба, выполненном по дуге окружности с центром, совпадающим с осью вращения рукоятки. Фиксация в любом положении осуществляется поворотом ручки (д) вокруг ее оси, что сопровождается затяжкой рукоятки на лимб. Для освобождения фиксатора ручку поворачивают в обратном направлении.

Видео:4d56 без балансировочных валовСкачать

4d56 без балансировочных валов
  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала


    🔍 Видео

    самая правильная замена сальника коленчатого вала Рено ЛоганСкачать

    самая правильная замена сальника коленчатого вала Рено Логан

    ставим новые сальники распредваловСкачать

    ставим новые сальники распредвалов

    Замена цепи ГРМ и балансировочных валов.AUDI A6 2.0 tsi CDNСкачать

    Замена цепи ГРМ и балансировочных валов.AUDI A6 2.0 tsi CDN

    Изготовление вала / Shaft ManufacturingСкачать

    Изготовление вала / Shaft Manufacturing

    фиксатор распредвалом грм своими рукамиСкачать

    фиксатор распредвалом грм своими руками

    3. Узлы зубчатых редукторов, опоры валов, расчетные схемы валов, корпуса, конструкции редукторовСкачать

    3. Узлы зубчатых редукторов, опоры валов, расчетные схемы валов, корпуса, конструкции редукторов

    Изготовление шлицевого вала.Скачать

    Изготовление шлицевого вала.

    Инструмент для фиксации распределительного валаСкачать

    Инструмент для фиксации распределительного вала

    Биение вала без прибора. #SHORTSСкачать

    Биение вала без прибора. #SHORTS

    Ремонт насосов Биение валов и муфт Центровка валовСкачать

    Ремонт насосов  Биение валов и муфт  Центровка валов

    Ременная передача. Урок №3Скачать

    Ременная передача. Урок №3

    Балансирный вал Tiguan Passat gen2Скачать

    Балансирный вал Tiguan Passat gen2

    Лекция «Валы и оси»Скачать

    Лекция «Валы и оси»

    Лекция 9. Валы и осиСкачать

    Лекция 9. Валы и оси
Поделиться или сохранить к себе:
Технарь знаток