Форма проточной части осевого компрессора

Видео:Рабочий процесс в осевой ступени турбиныСкачать

Рабочий процесс в осевой ступени турбины

Формы проточной части и изменение осевой скорости по тракту осевого компрессора

При одинаковом расходе рабочего тела через все ступени компрессора увеличение его плотности по мере сжатия в отдельных ступенях должно сопровождаться согласно уравнению расхода потока либо снижением осевой скорости, либо уменьшением площади проточной части.

Снижение осевой скорости в последних ступенях компрессора невыгодно, поскольку, как следует из соотношения

снижение са при данной густоте решётки колеса приводит к снижению закрутки ∆wu , т.е. в конечном счёте к снижению адиабатической работы ступени.

С другой стороны, увеличение d (уменьшение высоты лопатки) приводит к увеличению роли концевых потерь, и, как следствие, к снижению КПД ступени, которое становится особенно существенным при >0,85…0,9.

С этой точки зрения, наоборот, выгодно уменьшать осевую скоростьпотока на выходе из компрессора.

Поэтому при проектировании компрессора при переходе от первых к последним ступеням одновременно уменьшают и высоту лопаток и осевую скорость потока рабочего тела.

Возможный характер изменения осевой скорости по тракту компрессора на расчётном режиме показан на рис. 7.

Форма проточной части осевого компрессора

Кривая 1 соответствует постепенному снижению са от ступени к ступени. В ряде случаев бывает более выгодным сохранение постоянной са в первых ступенях (кривая 2) или даже некоторое увеличение её в средних сечениях (кривая 3).

Однако при этом необходимо учитывать, что во избежание падения КПД последующее снижение са в пределах одной ступени не должно превышать 10 – 15 м/с.

Обычно в авиационных компрессорах скорость рабочего тела на выходе из последней ступени равна 120 – 180 м/с.

Уменьшение высоты лопаток от ступени к ступени может достигаться либо увеличением внутреннего диаметра, либо уменьшением наружного диаметра рабочего колеса и неподвижных аппаратов, либо одновременным изменением обоих диаметров.

Возможные формы проточной части многоступенчатых одноконтурных компрессоров показаны на рис.8.

Форма проточной части осевого компрессора

По конструктивным и технологическим соображениям наиболее удобными схемами, в которых либо наружный, либо внутренний диаметр у всех ступеней остаётся постоянным (схемы 1 и 2).

В схеме 1 средний диаметр постепенно возрастает от ступени к ступени, что позволяет получить благодаря высоким окружным скоростям значительно большую адиабатическую работу сжатия в каждой из средних и последних ступеней, чем для схемы 2 (при одинаковых параметрах первой ступени), и за счёт этого уменьшить требуемое число ступеней.

Вместе с тем, при одних и тех же значениях Gв и πк * и одинаковой скорости на входе в схеме 1 высота лопаток в последних ступенях получается (из-за большого среднего диаметра) заметно меньше, чем в схеме 2 , что неблагоприятно сказывается на КПД ступеней.

Таким образом, каждая из этих схем имеет свои достоинства и недостатки.

В схемах 3 и 4 указанные недостатки выражены ещё более резко, и поэтому они не применяются на практике.

В компрессорах авиационных ГТД часто часто применяются компромиссные схемы, в которых уменьшение высоты лопаток достигается одновременным уменьшением наружного диаметра и увеличением внутреннего диаметра ступеней. При этом средний диаметр ступеней остаётся примерно постоянным (схема 5) или чаще в первых ступенях используется главным образом увеличение Dвт , а в последних – уменьшение Dк (схема 6).

Дата добавления: 2016-04-02 ; просмотров: 582 ;

Видео:Центробежный компрессорСкачать

Центробежный компрессор

II. Форма проточной части осевого компрессора

Конструктивная схема компрессора определяется также формой проточной части.

1. У проточной части с постоянным наружным диаметром D
(рис. а) к последним ступеням компрессора средний диаметр увеличивается. Достоинства схемы.

Форма проточной части осевого компрессораФормы проточная часть осевого компрессора

– Увеличивается средняя окружная скорость, возрастает напорность ступеней и уменьшается их число, необходимое для получения требуемой степени повышения давленая πк*.

– Упрощается изготовления корпуса, который имеет цилиндрическую форму.

– Радиальные зазоры между лопатками и корпусом компрессора не зависят от расположения РУПа.

Читайте также: Что то гремит в компрессоре холодильника

Величина радиального зазора в этом случае определяется деформациями ротора и статора, из-за действия силы веса, инерционных сил, тепловых нагрузок и точностью изготовления.

Недостатком схемы проточной части с постоянным наружным диаметром:

– возможно сильное уменьшение длины лопаток последних ступеней, что приводит к увеличению концевых потерь и уменьшению коэффициента полезного действия ступени.

В этом случае целесообразно использовать иную форму проточной части, а именно – с постоянным внутренним диаметром d.

2.Форму проточной части с постоянным внутренним диаметром dв (см. рис. в).

Достоинства схемы.

– Позволяет получить более длинные лопатки последних ступеней, чем в схеме, имеющей проточную часть с постоянным наружным диаметром, что уменьшает потери и повышает к п д.

– Позволяет удобно разместить агрегаты, не увеличивая практически мидель двигателя.

При постоянном внутреннем диаметре проточной части упрощается технологияизготовления элементов ротора, к которым крепятся рабочие лопатки.

Недостатки схемы.

– Средний диаметр уменьшается от ступени к ступени, что приводит к уменьшению средней окружной скорости и напорность ступеней. Это может привести к увеличению числа ступеней для получения требуемого πк*.

– Величина радиального зазора между ротором и корпусом при этом зависит от места расположенияРУПа, что необходимо учитывать при определении минимально возможной величины зазора. Из-за температурных деформаций и «набегания» допусков происходит взаимное смещение ротора и статора. Поэтому радиальный зазор в данной схеме должен быть больше, чем в конструктивной схеме компрессора с проточной частью, имеющей постоянный наружный диаметр.

3. Форму проточной части с постоянным средним диаметром Dср

Конструктивная схема компрессора с постоянным средним диаметром проточной части (см. рис. б) занимает промежуточное положение между двумя рассмотренными выше и часто обусловливается удобством конструктивной компоновки компрессора, особенно в ТРДД.

Достоинства и недостатки являются промежуточными между двумя первыми схемами.

4. При использовании комбинированных проточных частей (например, D = const и d = const) компрессор обладает достоинствами и недостатками, свойственными компрессорам с проточными частями его составляющих (см. рис. г).

III. По скорости потока воздуха в проточной части компрессора

В зависимости от отношения скорости потока к скорости звука в проточной части различают дозвуковые и сверхзвуковые компрессоры.

Достоинства сверхзвукового осевого компрессора: меньшее число ступеней, чем дозвуковой, для создания одного и того же значения πк, следовательно, меньшиеразмер и массу.

1. Обладает меньшим запасом газодинамической устойчивости. Поэтому требуется более трудоемкая его отработка для обеспечения необходимой газодинамической устойчивости.

2. Лопатки, имеющие сверхзвуковые профили, очень чувствительны к повреждениям посторонними предметами. Повреждения лопаток, чаще в виде забоин, являются концентраторами напряжений и приводят к усталостному разрушению лопаток.

Для уменьшения массы компрессора целесообразно сверхзвуковыми выполнять лишь несколько ступеней

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Видео:Лекция 3 Основы рабочего процесса ВРД. Часть 1 Работа ступени осевого компрессораСкачать

Лекция 3 Основы рабочего процесса ВРД. Часть 1 Работа ступени осевого компрессора

Формы проточной части и изменение осевой скорости по тракту осевого компрессора

При одинаковом расходе рабочего тела через все ступени компрессора увеличение его плотности по мере сжатия в отдельных ступенях должно сопровождаться согласно уравнению расхода потока либо снижением осевой скорости, либо уменьшением площади проточной части.

Снижение осевой скорости в последних ступенях компрессора невыгодно, поскольку, как следует из соотношения

снижение са при данной густоте решётки колеса приводит к снижению закрутки ∆wu , т.е. в конечном счёте к снижению адиабатической работы ступени.

С другой стороны, увеличение d (уменьшение высоты лопатки) приводит к увеличению роли концевых потерь, и, как следствие, к снижению КПД ступени, которое становится особенно существенным при >0,85…0,9.

С этой точки зрения, наоборот, выгодно уменьшать осевую скоростьпотока на выходе из компрессора.

Читайте также: Как устроен холодильник с инверторным компрессором

Поэтому при проектировании компрессора при переходе от первых к последним ступеням одновременно уменьшают и высоту лопаток и осевую скорость потока рабочего тела.

Возможный характер изменения осевой скорости по тракту компрессора на расчётном режиме показан на рис. 7.

Форма проточной части осевого компрессора

Кривая 1 соответствует постепенному снижению са от ступени к ступени. В ряде случаев бывает более выгодным сохранение постоянной са в первых ступенях (кривая 2) или даже некоторое увеличение её в средних сечениях (кривая 3).

Однако при этом необходимо учитывать, что во избежание падения КПД последующее снижение са в пределах одной ступени не должно превышать 10 – 15 м/с.

Обычно в авиационных компрессорах скорость рабочего тела на выходе из последней ступени равна 120 – 180 м/с.

Уменьшение высоты лопаток от ступени к ступени может достигаться либо увеличением внутреннего диаметра, либо уменьшением наружного диаметра рабочего колеса и неподвижных аппаратов, либо одновременным изменением обоих диаметров.

Возможные формы проточной части многоступенчатых одноконтурных компрессоров показаны на рис.8.

Форма проточной части осевого компрессора

По конструктивным и технологическим соображениям наиболее удобными схемами, в которых либо наружный, либо внутренний диаметр у всех ступеней остаётся постоянным (схемы 1 и 2).

В схеме 1 средний диаметр постепенно возрастает от ступени к ступени, что позволяет получить благодаря высоким окружным скоростям значительно большую адиабатическую работу сжатия в каждой из средних и последних ступеней, чем для схемы 2 (при одинаковых параметрах первой ступени), и за счёт этого уменьшить требуемое число ступеней.

Вместе с тем, при одних и тех же значениях Gв и πк * и одинаковой скорости на входе в схеме 1 высота лопаток в последних ступенях получается (из-за большого среднего диаметра) заметно меньше, чем в схеме 2 , что неблагоприятно сказывается на КПД ступеней.

Таким образом, каждая из этих схем имеет свои достоинства и недостатки.

В схемах 3 и 4 указанные недостатки выражены ещё более резко, и поэтому они не применяются на практике.

В компрессорах авиационных ГТД часто часто применяются компромиссные схемы, в которых уменьшение высоты лопаток достигается одновременным уменьшением наружного диаметра и увеличением внутреннего диаметра ступеней. При этом средний диаметр ступеней остаётся примерно постоянным (схема 5) или чаще в первых ступенях используется главным образом увеличение Dвт , а в последних – уменьшение Dк (схема 6).

Распределение работы сжатия между

Ступенями компрессора

Различные ступени компрессора работают в неодинаковых условиях: они имеют различные окружные и осевые скорости, их лопатки обтекаются с различными числами М и т.д. Поэтому адиабатическая работа сжатия в различных ступенях одного и того же компрессора могут существенно отличаться друг от друга.

Типичное распределение адиабатической работы между ступенями одновального осевого компрессора представлено на рис. 9 кривой 1.

Форма проточной части осевого компрессора

В первой и меньшей мере в последних ступенях работа заметно снижена по сравнению с работой, приходящейся на каждую из средних ступеней.

Форма проточной части осевого компрессора

Такой характер распределения работы, закладываемый при проектировании компрессора, объясняется следующими соображениями.

1. Первая ступень имеет самое малое значение и работает при самой низкой температуре рабочего тела. Поэтому периферийные сечения её лопаток обтекаются потоком с высокими значениями М , в то время как корневое сечение имеет низкую окружную скорость и, следовательно, не может иметь высокого значения Lu .

2. На нерасчётных режимах углы атаки на рабочих лопатках первой ступени могут сильно возрасти и, кроме того, первые ступени наиболее подвержены влиянию различных возмущений входящего в двигатель потока, вызванного неравномерностью потока за воздухозаборником. Следовательно, в первых ступенях надо иметь повышенные запасы по углу атаки. Таким образом, при распределении работы сжатия между ступенями первые одну-две ступени приходится нагружать значительно меньше остальных.

Читайте также: Компрессор кондиционера hover h2 артикул

3. Работу сжатия, приходящуюся на каждую из последних ступеней , обычно несколько снижают, т.к. из-за снижении осевой скорости трудно сохранить высокие значения закрутки рабочего тела в рабочем колесе. Кроме того, эти ступени из-за малой высоты лопаток обычно имеют пониженные значения КПД. Поэтому для повышения КПД всего компрессора целесообразно основную часть работы сжатия переложить на ступени, имеющие более длинные лопатки.

Если среднее значение работы, затрачиваемой на вращение ступени в компрессоре Lст.ср.=Lк/z , принять за 100%, то обычно Lст1 составляет 55 – 75% этой величины, Lст11 – 75 – 90%, а Lст z – 80 – 105%/

Значения ηст * в первых ступенях обычно составляют 0,84 – 0,86, в средних – 0,88 – 0,91 и в последних – 0,86 – 0,87.

В некоторых случаях для увеличения степени повышения давления и производительности осевого компрессора к нему спереди добавляют ещё одну («нулевую») ступень. Если в качестве такой ступени используют трансзвуковую ступень, то модифицированный компрессор будет иметь ступени смешанного типа. Трансзвуковую ступень для получения хороших значений КПД обычно выполняют сильно нагруженной.

Но вследствие повышения температуры рабочего тела при сжатии его трансзвуковой ступени окружные скорости в дозвуковых ступенях при сохранении прежнего уровня чисел М могут быть несколько увеличены.

На рис. 9 этот случай представлен кривой 2 .

Кривая 3 на этом рисунке соответствует случаю, когда все ступени компрессора выполняются трансзвуковыми и как видим из рис. 9 необходимое число ступеней при заданной степени повышения давления оказывается меньшим.

В двухвальных ТРД используется компрессор (рис. 10), в котором ступени разбиты на две группы (два каскада), каждая из которых имеет самостоятельный привод от своей турбины.

Первая по ходу потока группа ступеней называется каскадом или компрессором низкого давления (КНД), а вторая – компрессором высокого давления (КВД).

Рассмотрим распределение работы сжатия между ступенями в таком компрессоре. Оба каскада в целом образуют осевой компрессор, в котором изменение высоты лопаток, изменение осевой скорости и формы проточной части определяются так же как и в обычном компрессоре.

Распределение работы между каскадами выбирается с учётом возможностей турбин, приводящих во вращение первый и второй каскады. Обычно степень повышения давления во втором каскаде в расчётных условиях работы π*квд=3…4.

Форма проточной части осевого компрессора

Одна из особенностей двухкаскадного компрессора состоит в возможности увеличения частоты вращения группы ступеней высокого давления в расчётных условиях (по сравнению с первым каскадом). Это объясняется тем, что вследствие подогрева воздуха в первом каскаде при равных числах М рабочие лопатки второго каскада могут иметь более высокие окружные скорости.

В том случае, когда частоты вращения обоих каскадов приблизительно равны между собой, то распределение работы между каскадам отображается кривой 1 (рис.10).

Кривая 2 характерна для компрессора, в котором второй каскад имеет частоту вращения своего ротора, превосходящую частоту вращения первого каскада.

Форма проточной части осевого компрессора

Отметим особенности распределения работы сжатия между ступенями в осецентробежных и в многоступенчатых центробежных компрессорах.

В осецентробежном компрессоре (рис. 11) последняя (центробежная) ступень вследствие более высокого значения окружной скорости и большего коэффициента нагрузки μ имеет обычно в несколько раз более высокое значение эффективной и соответственно адиабатической работы, чем стоящие впереди осевые ступени.

Характер распределения работы между ступенями для этого случая показан на рис. 11.

В многоступенчатых центробежных компрессорах обычно рабочие колёса выполняются одинакового диаметра Тогда при характерном для центробежных ступеней радиальном расположении лопаток эффективная работа всех ступеней , сидящих на одном валу, будет одинаковой, изменяясь от ступени к ступени практически пропорционально квадрату диаметра рабочего колеса.

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала


    💡 Видео

    Как работаетй осевой компрессор или вентиляторСкачать

    Как работаетй осевой компрессор или вентилятор

    Учебный фильм "Трубопроводный транспорт газа" - Часть 2Скачать

    Учебный фильм "Трубопроводный транспорт газа" - Часть 2

    Рабочий процесс в осевой ступени турбиныСкачать

    Рабочий процесс в осевой ступени турбины

    Курс ""Турбомашины". Раздел 6.1.2 Проектирование проточной части ГТД 1 (лектор Батурин О.В.)Скачать

    Курс ""Турбомашины". Раздел 6.1.2 Проектирование проточной части ГТД 1 (лектор Батурин О.В.)

    Курс ""Турбомашины". Раздел 6.1.1 Проектирование проточной части ГТД 1 (лектор Батурин О.В.)Скачать

    Курс ""Турбомашины". Раздел 6.1.1 Проектирование проточной части ГТД 1 (лектор Батурин О.В.)

    Как работает торцевое уплотнение? / Центробежный насосСкачать

    Как работает торцевое уплотнение? / Центробежный насос

    Действующая модель осевого компрессора | РЭП Холдинг | Газовый форумСкачать

    Действующая модель осевого компрессора | РЭП Холдинг | Газовый форум

    Курс ""Турбомашины". Раздел 7.6 Изменение в многосупенчатом компрессоре (лектор Батурин О.В.)Скачать

    Курс ""Турбомашины". Раздел 7.6 Изменение в многосупенчатом компрессоре (лектор Батурин О.В.)

    03 Профилирование компрессораСкачать

    03   Профилирование компрессора

    Курс ""Турбомашины". Раздел 3.1.1. Принцип действия ступени компрессораСкачать

    Курс ""Турбомашины". Раздел 3.1.1. Принцип действия ступени компрессора

    Все о компрессорахСкачать

    Все о компрессорах

    Как работает центробежный насос? Основные типы конструкций центробежных насосовСкачать

    Как работает центробежный насос? Основные типы конструкций центробежных насосов

    Как работает центробежный газовый компрессорСкачать

    Как работает центробежный газовый компрессор

    Курс ""Турбомашины" Глава 3.2 Рабочий процесс центробежного компрессора. ч. 1 (лектор Батурин О.В.)Скачать

    Курс ""Турбомашины" Глава 3.2  Рабочий процесс центробежного компрессора. ч. 1 (лектор Батурин О.В.)

    Лекция 3 Основы рабочего процесса ВРД. Часть 5 Изменение параметров потокаСкачать

    Лекция 3 Основы рабочего процесса ВРД. Часть 5 Изменение параметров потока

    Работа винтового компрессора, его принцип действия и устройство.Скачать

    Работа винтового компрессора, его принцип действия и устройство.

    Курс ""Турбомашины". Проектный расчет ступени турбомашиныСкачать

    Курс ""Турбомашины".  Проектный расчет ступени турбомашины
Поделиться или сохранить к себе:
Технарь знаток