Подборка формул для расчета валов и брусьев на кручение и решения задач сопротивления материалов по расчету внутренних моментов, касательных напряжений, деформаций и углов закручивания при кручении.
τ — касательные напряжения,
T – внутренний крутящий момент,
Ip – полярный момент инерции сечения вала,
Wp – полярный момент сопротивления сечения,
[ τ ] – допустимое напряжение,
G – модуль упругости II рода (модуль сдвига),
ρ — расстояние от центра сечения до рассматриваемой точки,
D – внешний диаметр вала,
d – внутренний диаметр вала кольцевого сечения.
Закон Гука при кручении (чистом сдвиге)
Расчет касательных напряжений в произвольной точке сечения вала
Формулы полярных моментов инерции и сопротивления
- для вала сплошного (круглого) сечения
- для вала кольцевого сечения
Формулы для подбора диаметра вала по условию прочности
- сплошное круглое сечение
- кольцевое сечение
Абсолютные деформации (угол закручивания участков вала)
Видео:КРУЧЕНИЕ ВАЛА. Касательные напряжения. Сопромат.Скачать
Техническая механика
Примеры решения задач по сопротивлению материалов
На этой странице приведен еще один пример решения задачи по Сопромату, в которой необходимо произвести расчет вала переменного сечения (ступенчатого), нагруженного крутящими моментами. По результатам расчетов необходимо подобрать размеры вала, а также определить максимальную деформацию вала на скручивание (угол закручивания).
Результаты расчетов оформлены эпюрами крутящих моментов, касательных напряжений и углов закручивания бруса.
Студентам технических специальностей ВУЗов в качестве методической помощи предлагаются к скачиванию готовые варианты контрольных работ по сопромату (прикладной механике). Представленные задания и примеры их решения предназначены, в частности, для учащихся Алтайского Государственного технического университета.
Варианты контрольных работ можно скачать в формате Word для ознакомления с порядком решения заданий, или для распечатывания и защиты (при совпадении вариантов).
Видео:КРУЧЕНИЕ. ЭПЮРЫ ЗАКРУЧИВАНИЯ. Углы поворота. СопроматСкачать
Расчет вала
Условие задачи:
К стальному валу, состоящему из 4-х участков длиной l1…l4 приложено четыре сосредоточенных момента М1…М4 (см. рис. 1 ).
Требуется:
Построить эпюру крутящих моментов Мкр , подобрать диаметр вала из расчета на прочность, построить эпюру максимальных касательных напряжений τmax , построить эпюру углов закручивания φ вала и определить наибольший относительный угол закручивания вала.
Исходные данные:
Указания:
Вычертить схему вала в соответствии с исходными данными.
Знаки моментов в исходных данных означают: плюс – момент действует против часовой стрелки относительно оси Z , минус – по часовой стрелке (см. навстречу оси Z ). В дальнейшем значения моментов принимать по абсолютной величине.
Участки нумеровать от опоры.
Допускаемое касательное напряжение [ τ ] для стали принимать равным 100 МПа.
Решение:
1. Определим методом сечений значения крутящих моментов на каждом силовом участке от свободного конца вала.
Крутящий момент равен алгебраической сумме внешних моментов, действующих на вал по одну сторону сечения.
2. Подберем сечение вала из расчета на прочность при кручении по полярному моменту сопротивления для участка, где величина крутящего момента максимальная (без учета знака):
Так как для круглого сечения полярный момент равен: Wр = πD 3 /16 , то можно записать:
D ≥ 3 √ (16Мкр/π[τ]) ≥ 3√(16×12,2×10 3 /3,14×[100×10 6 ]) = 0,0855 м или D ≥ 85,5 мм.
( Здесь и далее знак «√» означает квадратный корень из выражения )
В соответствии со стандартным рядом, предусмотренным ГОСТ 12080-66, принимаем диаметр вала D = 90 мм.
3. Определим угол закручивания для каждого участка вала по формуле:
где
G – модуль упругости 2-го рода; для стали G = 8×10 10 Па;
Ip – полярный момент инерции (для круглого сечения Iр = πD 4 /32 ≈ 0,1D 4 , м 4 ).
Произведение G×Iр = 8×10 10 ×0,1×0,094 ≈ 524880 Н×м 2 – жесткость сечения данного вала при кручении.
Читайте также: Обв вала лицо веером
Расчитываем углы закручивания на каждом участке:
4. Определяем углы закручивания сечений вала, начиная от жесткой заделки (опоры):
5. Определяем максимальное касательное напряжение на каждом силовом участке по формуле:
6. Наибольший относительный угол закручивания Θmax определим по формуле:
7. По результатам расчетов строим эпюры крутящих моментов Мкр , касательных напряжений τmax и углов закручивания φ (см. рис. 2).
Видео:Кручение. Расчет составного вала кольцевого сечения.Скачать
Тема 2.4. Кручение
Под кручением понимается такой вид деформации, когда в поперечных сечениях бруса действует только крутящий момент Mk, (другое обозначение T, Mz), а остальные силовые факторы (нормальная и поперечная силы и изгибающие моменты) отсутствуют.
Или другое определение кручением называют деформацию, возникающую при действии на стержень пары сил, расположенной в плоскости, перпендикулярной к его оси (рис.1).
Кручение возникает в валах, винтовых пружинах, в элементах пространственных конструкций и т.п.
Деформация кручения наблюдается если прямой брус нагружен внешними моментами (парами сил M), плоскости действия которых перпендикулярны к его продольной оси
В чистом виде деформация кручения встречается редко, обычно присутствуют и другие внутренние силовые факторы (изгибающие моменты, продольные силы).
Стержни круглого или кольцевого сечения, работающие на кручение, называют валами.
Внешние крутящие моменты передаются на вал в местах посадки на него шкивов, зубчатых колес, там, где поперечная нагрузка смещена относительно оси вала.
Мы будем рассматривать прямой брус только в состоянии покоя или равномерного вращения. В этом случае алгебраическая сумма всех внешних скручивающих моментов, приложенных к брусу, будет равна нулю.
При расчете брусьев, испытывающий деформацию кручения, на прочность и жесткость при статическом действии нагрузки, надо решить две основные задачи. Это определение напряжений (от Mk), возникающих в брусе, и нахождение угловых перемещений в зависимости от внешних скручивающих моментов.
При расчете валов обычно бывает известна мощность, передаваемая на вал, а величины внешних скручивающих моментов, подлежат определению. Внешние скручивающие моменты, как правило, передаются на вал в местах посадки на него шкивов, зубчатых колес и т.п.
В ряде случаев величины внешних крутящих моментов определяются по величине потребляемой мощности и по скорости вращения вала. Если вал делает в минуту n оборотов (n- частота вращения, единицы измерения — об/мин.), то вращающий момент можно найти по формуле: Мвр=P/n,
эта формула дает значение момента в Н·м, если мощность выражена в Вт, а частота вращения n — об/мин.
§2. Построение эпюр крутящих моментов
Для определения напряжений и деформаций вала необходимо знать значения внутренних крутящих моментов Mk (Mz) в поперечных сечениях по длине вала. Диаграмму, показывающую распределение значений крутящих моментов по длине бруса, называют эпюрой крутящих моментов. Зная величины внешних скручивающих моментов и используя метод сечений, мы можем определить крутящие моменты, возникающие в поперечных сечениях вала.
В простейшем случае, когда вал нагружен только двумя внешними моментами (эти моменты из условия равновесия вала ΣMz=0 всегда равны друг другу по величине и направлены в противоположные стороны), как показано на рис. 1, крутящий момент Mz в любом поперечном сечении вала (на участке между внешними моментами) по величине равен внешнему моменту |M1|=|M2|.
Читайте также: Преобразователь 220 в 12 вольт для компрессора
Видео:Кручение. Часть 6 Жесткость валаСкачать
Техническая механика
Примеры решения задач по сопротивлению материалов
На этой странице приведен еще один пример решения задачи по Сопромату, в которой необходимо произвести расчет вала переменного сечения (ступенчатого), нагруженного крутящими моментами. По результатам расчетов необходимо подобрать размеры вала, а также определить максимальную деформацию вала на скручивание (угол закручивания).
Результаты расчетов оформлены эпюрами крутящих моментов, касательных напряжений и углов закручивания бруса.
Студентам технических специальностей ВУЗов в качестве методической помощи предлагаются к скачиванию готовые варианты контрольных работ по сопромату (прикладной механике). Представленные задания и примеры их решения предназначены, в частности, для учащихся Алтайского Государственного технического университета.
Варианты контрольных работ можно скачать в формате Word для ознакомления с порядком решения заданий, или для распечатывания и защиты (при совпадении вариантов).
Видео:Расчет вала на прочность и жесткость. Эпюра крутящих моментовСкачать
Расчет вала
Условие задачи:
К стальному валу, состоящему из 4-х участков длиной l1…l4 приложено четыре сосредоточенных момента М1…М4 (см. рис. 1 ).
Требуется:
Построить эпюру крутящих моментов Мкр , подобрать диаметр вала из расчета на прочность, построить эпюру максимальных касательных напряжений τmax , построить эпюру углов закручивания φ вала и определить наибольший относительный угол закручивания вала.
Исходные данные:
Указания:
Вычертить схему вала в соответствии с исходными данными.
Знаки моментов в исходных данных означают: плюс – момент действует против часовой стрелки относительно оси Z , минус – по часовой стрелке (см. навстречу оси Z ). В дальнейшем значения моментов принимать по абсолютной величине.
Участки нумеровать от опоры.
Допускаемое касательное напряжение [ τ ] для стали принимать равным 100 МПа.
Решение:
1. Определим методом сечений значения крутящих моментов на каждом силовом участке от свободного конца вала.
Крутящий момент равен алгебраической сумме внешних моментов, действующих на вал по одну сторону сечения.
2. Подберем сечение вала из расчета на прочность при кручении по полярному моменту сопротивления для участка, где величина крутящего момента максимальная (без учета знака):
Так как для круглого сечения полярный момент равен: Wр = πD 3 /16 , то можно записать:
D ≥ 3 √ (16Мкр/π[τ]) ≥ 3√(16×12,2×10 3 /3,14×[100×10 6 ]) = 0,0855 м или D ≥ 85,5 мм.
( Здесь и далее знак «√» означает квадратный корень из выражения )
В соответствии со стандартным рядом, предусмотренным ГОСТ 12080-66, принимаем диаметр вала D = 90 мм.
3. Определим угол закручивания для каждого участка вала по формуле:
где
G – модуль упругости 2-го рода; для стали G = 8×10 10 Па;
Ip – полярный момент инерции (для круглого сечения Iр = πD 4 /32 ≈ 0,1D 4 , м 4 ).
Произведение G×Iр = 8×10 10 ×0,1×0,094 ≈ 524880 Н×м 2 – жесткость сечения данного вала при кручении.
Расчитываем углы закручивания на каждом участке:
4. Определяем углы закручивания сечений вала, начиная от жесткой заделки (опоры):
5. Определяем максимальное касательное напряжение на каждом силовом участке по формуле:
6. Наибольший относительный угол закручивания Θmax определим по формуле:
7. По результатам расчетов строим эпюры крутящих моментов Мкр , касательных напряжений τmax и углов закручивания φ (см. рис. 2).
Видео:Сопротивление материалов. Лекция: кручение круглого стержняСкачать
ПроСопромат.ру
Видео:Кручение валаСкачать
Технический портал, посвященный Сопромату и истории его создания
Видео:Конус на токарном станке ,вычисление угла и изготовлениеСкачать
Кручение
Внутренний крутящий момент в сечении вала Мк (может быть обозначен буквой Т, Мz) вычисляется с помощью метода сечений, при этом моменты учитываются по одну сторону от сечения.
Читайте также: Размер коленчатых валов ямз 236
где Мi – внешний активный или реактивный крутящий момент; правило знаков для внутренних крутящих моментов устанавливается произвольно.
Для вала с круглым (в т.ч. в виде кольца) поперечным сечением касательные напряжения определяются по формуле:
где — это полярные моменты инерции для сплошного и кольцевого сечений соответственно, ρ – координата произвольной точки сечения, D, d – наружний и внутренний диаметры сечения.
Максимальные касательные напряжения действуют в точках поверхностного слоя при ρ=ρmax
Условие прочности по допускаемым напряжениям
где — это допускаемое касательное напряжение.
Угол закручивания (рад) на силовом участке вала при постоянных значениях крутящего момента и поперечного момента инерции для данного участка вычисляется следующим образом
где G – модуль сдвига
Относительный угол закручивания (рад/м) для силового участка
Условие жесткости при кручении вала с круглым поперечным сечением записывается в виде
Для вала с прямоугольным поперечным сечением эпюры касательных напряжений имеют вид.
В характерных точках сечения
угол закручивания на силовом участке вала
где α, η, β – коэффициенты, зависящие от отношения a/b (или h/b — отношение большей стороны прямоугольника к меньшей)
Если вал с эллиптической формой поперечного сечения и полуосями a и b, то его характерные эпюры касательных напряжений будут выглядеть следующим образом.
Касательные напряжения в характерных точках сечения
Угол закручивания на силовом участке вала
Кручение бруса тонкостенного замкнутого круглого сечения
Тонкостенное круглое сечение характеризуется средним радиусом Rср и толщиной стенки трубы δ:
Считается, что касательные напряжения по толщине стенки распределяются равномерно и равны:
Угол закручивания
Кручение пустотелых валов круглого сечения
Трубчатое сечение бруса в условиях кручения оказывается наиболее рациональным, так как материал из центральной зоны сечения, слабо напряженной, удален в область наибольших касательных напряжений. Вследствие этого прочностные свойства материала используются значительно полнее, чем в брусьях сплошного круглого сечения, и при всех прочих равных условиях применение трубчатого сечения вместо сплошного позволяет экономить материал.
Теория расчета бруса сплошного круглого сечения полностью применима и к пустотелым валам. Изменяются лишь геометрические характеристики сечения:
Кручение бруса прямоугольного сечения
Опыт показывает, что при кручении брусьев некруглого поперечного сечения сами сечения не остаются плоскими, то есть происходит депланация поперечных сечений. Исследовать напряженное и деформированное состояние таких брусьев при кручении методами сопротивления материалов не представляется возможным, так как в основе их лежит гипотеза плоских сечений (гипотеза Бернулли).
Задача о кручении бруса некруглого, в частности, прямоугольного сечения решена с помощью метода теории упругости, и на основе этого решения предложены простые расчетные формулы, имеющие ту же структуру, что и формулы для бруса круглого сечения, а именно:
Здесь: Wк=α∙h∙b2– момент сопротивления при кручении,
Iк=β∙h∙b3 – момент инерции при кручении.
В этих формулах: b – меньшая из сторон прямоугольника,
h – большая сторона,
α, β – коэффициенты, значения которых приводятся в таблице в зависимости от отношения сторон h/b (эта таблица содержится в рубрике «Кручение» или в любом учебнике сопротивления материалов).
Распределение касательных напряжений по прямоугольному сечению тоже отличается от распределения в круглом сечении:
Значения коэффициента γ Запись опубликована 04.09.2014 автором admin в рубрике Кручение, Сопромат.
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
🎥 Видео
Сопротивление материалов. Лекция: кручение тонкостенного профиляСкачать
9.1 Расчет валов приводаСкачать
Основы простого сопротивления. Часть 2. Кручение круглого валаСкачать
11. Кручение ( практический курс по сопромату )Скачать
Основы сопромата. Задача 5. Расчет стержня на кручениеСкачать
2 1 Кручение круглого вала К выполнению РГЗСкачать
Кручение. Статически неопределимая задача.Скачать
Сопромат. Практическое занятие №1.4Скачать
Свободное кручение тонкостенного стержняСкачать
Сопромат №4: Расчет вала на прочность и жесткостьСкачать
Кручение для ОНЛСкачать
Расчет вала на изгиб с кручениемСкачать