Для питания ЗРУ-10 кВ требуется выбрать и проверить сечение сборных шин 10 кВ от силового трансформатора мощностью 16 МВА.
- Максимальный трехфазный ток КЗ на шинах 10 кВ – Iк.з = 9,8 кА;
- Силовой трансформаторов типа ТДН-16000/110-У1 загружен на 60%.
Согласно ПУЭ 7-издание п.1.3.28 проверку по экономической целесообразности не выполняют, поэтому выбор шин будет выполняться только по длительно допустимому току (ПУЭ 7-издание п.1.3.9 и п.1.3.22).
Проверку шин производят на термическую и электродинамическую стойкость к КЗ (ПУЭ 7-издание п.1.4.5).
Видео:Расчёт сечения кабеляСкачать
1. Выбор шин по длительно допустимому току
Выбор шин по длительно допустимому току (по нагреву) учитывают не только нормальные, но и послеаварийные режимы, а также режимы в период ремонтов и возможного неравномерного распределения токов между секциями шин [Л2, с.220].
1.1 Определяем ток нормального режима, когда трансформатор загружен на 60%:
- Sн.тр-ра = 16000 кВА – номинальная мощность трансформатора ТДН-16000/110-У1;
- Uн.=10,5 кВ – номинальное напряжение сети;
1.2. Определяем максимальный рабочий ток, когда один из трансформаторов перегружен на 1,4 от номинальной мощности (утяжеленный режим):
По таблице 1.3.31 (ПУЭ 7-издание) определяем допустимый ток для однополосных алюминиевых шин прямоугольного сечения 80х8 мм с допустимым током Iдоп.о = 1320 А.
1.3. Определяем длительно допустимый ток для прямоугольных шин сечением 80х8 мм с учетом поправочных коэффициентов по формуле 9.11 [Л1, с.170]:
Iдоп.о =1320 А –длительно допустимый ток полосы при температуре шины θш = 70 °С, температуре окружающей среды θо.с = 25 °С и расположения шин вертикально (на ребро), определяемый по таблице 1.3.31 (ПУЭ 7-издание);
k1 — поправочный коэффициент при расположении шин горизонтально (плашмя), согласно ПУЭ 7-издание п. 1.3.23, должны быть уменьшены на 5% для шин с шириной полос до 60 мм и на 8% для шин с шириной полос более 60 мм. Принимаем k1 = 0,92 (так как шины будут расположены плашмя).
k2 – поправочный коэффициент для шин при температуре окружающей среды (воздуха) θо.с отличной от 25 °С, определяемый по ПУЭ 7-издание таблица 1.3.3. Принимаем k3 = 0,94 с учетом, что среднеемесячная температура наиболее жаркого месяца равна +30 °С.
Принимаем сечение шин 80х10 мм, с допустимым током Iдоп.о =1480 А.
1.4. Определяем длительно допустимый ток для прямоугольных шин сечением 80х10 мм с учетом поправочных коэффициентов по формуле 9.11 [Л1, с.170]:
Принимаем шины марки АД31Т1 сечением 80х10 мм.
Видео:Расчет распределения тока по сечению шины с помощью 3D модели в программе ELCUT Busbar 3D model ElcСкачать
2. Проверка шин на термическую устойчивость
2.1. Определяем тепловой импульс, который выделяется при токе короткого замыкания по выражению 3.85 [Л2, с.190]:
- Iп.0 = 9,8 кА – начальное действующее значение тока КЗ на шинах 10 кВ.
- Та – постоянная времени затухания апериодической составляющей тока короткого замыкания. Для ориентировочных расчетов значение Та определяем по таблице 3.8 [Л2, с.150]. Для трансформатора мощность 16 МВА, принимаем Та = 0,04. Если же вы хотите более точно рассчитать значение Та, можете воспользоваться формулами, представленными в пункте 6.1.4 ГОСТ Р 52736-2007.
2.1.1. Определяем полное время отключения КЗ по выражению 3.88 [Л2, с.191] и согласно пункта 4.1.5 ГОСТ Р 52736-2007:
tоткл.= tр.з.+ tо.в=0,1+0,07=0,18 сек.
- tр.з. – время действия основной защиты трансформатора, равное 0,1 сек (АПВ – не предусмотрено).
- tо.в – полное время отключения выключателя выбирается из каталога, равное 0,07 сек.
2.2. Определяем минимальное сечение шин по термической стойкости при КЗ по выражению 3.90 [Л2, с.191]:
где: С – функция, значения которой приведены в таблице 3.14. Для алюминиевых шин С = 91.
Читайте также: Шины питания в proteus
Как мы видим ранее принята алюминиевая шина сечением 80х10 мм – термически устойчива.
Видео:Формулы для расчета сечения кабеля и проводаСкачать
3. Проверка шин на электродинамическую устойчивость
- Ударный ток трехфазного КЗ на шинах 10 кВ — iуд = 24,5 кА;
- Шины выполнены из алюминиевого сплава марки АД31Т1 сечением 80х10 мм, расположены горизонтально в одной плоскости (плашмя) и имеют восемь пролетов.
- Длина пролета — l = 0,9 м;
- Расстояние между осями проводников — а= 0,27 м (расположение шин см.рис. 2а ГОСТ Р 52736-2007);
- Толщина шины — b = 10 мм = 0,01 м;
- Высота шины — h = 80 мм = 0,08 м;
3.1. Определяем момент инерции J и момент сопротивления W по расчетным формулам согласно таблицы 4 ГОСТ Р 52736-2007:
3.2. Определяем частоту собственных колебаний для алюминиевой шины по выражению 4.18 [Л2, с.221]:
где: S = 800 мм 2 = 8 см 4 – поперечное сечение шины 80х10 мм.
Если же у вас медные шины, то частоту собственных колебаний определяют по выражению 4.19 [Л2, с.221]:
В случае, если частота собственных колебаний больше 200 Гц, то механический резонанс не возникает. Если f0 200 Гц, поэтому расчет можно вести без учета колебательного процесса в шинной конструкции [Л2, с.221].
3.3. Определяем наибольшее удельное усилие при трехфазном КЗ по выражению 3.74 [Л2, с.221]:
- а = 0,27 м — расстояние между осями проводников (фазами), м;
- iуд. = 24,5*103 А – ударный ток трехфазного КЗ, А;
- Если расстояние между фазами а > 2*(b+h) > 2*(0,01+0,08); а = 0,27 м > 0,18 м, то в этом случае коэффициент формы kф = 1,0 [Л2, с.221];
3.4. Определяем максимальную силу, действующую на шинную конструкцию при трехфазном КЗ, данное значение нам понадобиться для проверки опорных изоляторов на механическую прочность [Л2, с.227]:
- l = 0,9 м – длина пролета, м;
- kп – поправочный коэффициент на высоту шины, если она расположена на ребро см. рис.4.8. В данном примере шины расположены горизонтально (плашмя), поэтому kп = 1,0:
где: Hиз. – высота изолятора.
Дальнейший расчет шинной конструкции в части выбора опорных изоляторов представлен в статье: «Выбор опорных изоляторов для шинного моста 10 кВ».
3.5. Определяем максимальное напряжение в шинах при трехфазном КЗ, возникающее при воздействии изгибающего момента по выражению 4.20 [Л2, с.222]:
- l = 0,9 м – длина пролета, м;
- W = 10,7 см 3 – момент сопротивления поперечного сечения шины, определенный ранее.
3.6. Сравниваем полученное максимальное напряжение в шинах σрасч. = 2,91 МПа с допустимым напряжением материала σдоп. = 137 МПа из таблицы 3 ГОСТ Р 52736-2008.
Обращаю ваше внимание, что сравнивается максимальное напряжение в шинах с допустимым напряжением в материале жестких шин, а не с допустимым напряжением в области сварного соединения, согласно ГОСТ Р 52736-2008 пункт 5.3.1 и ПУЭ 7-издание пункт 1.4.15.
Как видно из результатов расчетов σрасч. = 2,91 МПа Вывод:
Выбранные шины марки АД31Т1 сечением 80х10 мм удовлетворяют условию электродинамической стойкости, с длиной пролета l = 0,9 м.
- Справочник по электроснабжению и электрооборудованию. Том I. А.А. Федоров, 1986 г.
- Электрооборудование станций и подстанций. Второе издание. Л.Д. Рожкова, В.С. Козулин. 1980 г.
- ГОСТ Р 52736-2008 – Методы расчета электродинамического и термического действия тока короткого замыкания.
Поделиться в социальных сетях
Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» и «PayPal» .
Читайте также: Шины зимние в день заказа
Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.
Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.
В данной статье будет рассматриваться выбор кабеля (провода) по нагреву при повторно-кратковременном.
В данном примере нужно выбрать сечение гибких шин для питания ЗРУ-10 кВ от силового трансформатора типа.
В данной статье будет рассматриваться пример расчета реактивной мощности воздушной линии напряжением 10.
Требуется определить потери активной и реактивной мощности в автотрансформаторе типа АТДЦТН-125000/220/110.
Требуется определить относительную величину потери напряжения автотрансформатора типа АТДЦТН-125000/220/110.
Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.
Видео:Автомат на 16А для кабеля 2,5мм! Дурные советы электрикаСкачать
Выбор сечения шинопроводов
Видео:Как считать размер шин. Расчёт и расшифровка размеров и обозначений.Скачать
Выбор сечения шинопроводов
ВЫБОР СЕЧЕНИЯ ШИНОПРОВОДОВ
При прохождении тока по проводнику последний нагревается. Количество энергии, выделенное неизменным током, определяется из выражения: где — количество выделенного тепла, ВтЧс; I — ток в проводнике, A; R — сопротивление проводника, Ом; t — время прохождения тока, с.
Часть выделяемого тепла идет на повышение температуры проводника, а часть отдается в окружающую среду.
Находящиеся в воздухе шины охлаждаются главным образом путем конвекции, обусловленной движением воздуха вблизи поверхности проводника. Отвод тепла путем лучеиспускания невелик вследствие сравнительно малых температур нагрева проводника. Отвод тепла за счет теплопроводности ничтожен из-за малой теплопроводности воздуха.
Температура токопровода при прохождении тока повышается до наступления теплового равновесия, когда тепло, выделяемое в проводнике, оказывается равным теплу, отводимому с его поверхности в окружающую среду. Превышение температуры проводника над температурой окружающей среды пропорционально количеству выделяемого тепла, а следовательно, квадрату длительно проходящего но проводнику тока и зависит от условий прокладки шин.
Задача расчета шин на нагревание обычно сводится к определению тока, при котором температура проводника не превышает допустимого значения. При этом должны быть известны допустимая температура нагрева проводника, условия его охлаждения и температура окружающей среды. Предельно допустимая температура нагрева шин при длительной работе равна 70°С. Такая температура в основном принята для обеспечения удовлетворительной работа болтовых контактов, как правило, имеющихся в ошиновках. При кратковременном нагреве, например, токами к. з. допустимы предельные температуры для медных шин 300°С, для алюминиевых 200°С. Длительная работа шин при температуре, превышающей 110°С, приводит к значительному снижению их механической прочности вследствие отжига. Расчетная температура окружающей среды для голых проводников по действующим ПУЭ принята 25°С.
Нагрузочная способность проводника характеризуется длительно допустимым током нагрузки, определенным из условий нагрева его при заданных разностях температур проводника и окружающей среды .
Рассмотрим определение нагрузочной способности однородных неизолированных проводников. При тепловом равновесии количество тепла, выделяемое за единицу времени током I в проводе сопротивлением R, равно количеству тепла, отводимому в окружающую среду за то же время:
где — коэффициент теплоотдачи путем конвекции и лучеиспускания (теплопроводность воздуха мала), равный количеству тепла, отводимому в окружающую среду с поверхности проводника при разности температур между проводником и окружающей средой ; F — поверхность охлаждения проводника, ; — температуры проводника и окружающей среды, °С.
Если температуру нагрева проводника приравнять длительно допустимой и принять расчетную температуру окружающей среды , то из условия (10-22) можно определить длительно допустимый ток:
Таким образом, при заданных температурных условиях нагрузочная способность проводника возрастает с увеличением его поверхности охлаждения F, коэффициента теплоотдачи и уменьшением его электрического сопротивления .
Вычисление длительно допустимых токов по указанным формулам достаточно сложно, поэтому в практических расчетах электросетей используют готовые таблицы длительно допустимых токов нагрузки на шины из разных материалов и при разных условиях прокладки, определенных при длительно допустимой температуре окружающей среды. В связи с этим проверка шинопроводов на нагревание сводится к проверке выполнения условия
Читайте также: Вес объем шин сельхоз
где — максимальный рабочий ток цепи, в которую включен проводник; — длительно допустимый из условий нагрева тока нагрузки шинопровода.
Наличие явления поверхностного эффекта приводит к тому, что при переменном токе активное сопротивление всегда несколько больше, чем при постоянном. Поэтому согласно формуле (10-23) при прочих равных условиях допустимый ток нагрузки проводника при переменном токе несколько меньше, чем при постоянном. Наиболее существенно это явление сказывается при сплошном сечении шинопровода, например шинопровода прямоугольного сечения.
Иногда применяют шинопроводы трубчатого сечения. В неразрезанных трубах используется металл, расположенный только по поверхности сечения, в результате чего повышение сопротивления от поверхностного эффекта невелико и допустимые нагрузки при постоянном и переменном токах примерно одинаковы.
В установках всех напряжений жесткие шины окрашивают цветными эмалевыми красками. Помимо того, что это облегчает ориентировку и предотвращает коррозию шин, окраска также влияет на нагрузочную способность шин. Постоянное лучеиспускание окрашенных шин значительно больше, чем неокрашенных, поэтому охлаждение шин путем лучеиспускания улучшается, а это в свою очередь приводит к увеличению нагрузочной способности шин. При неизменных температурных условиях допустимый ток нагрузки окрашенных шин на 12—15% больше, чем неокрашенных.
Наибольшая алюминиевая шина прямоугольного сечения 120х10 мм кв. имеет длительно допустимый ток при переменном токе, равный 2070 А. При большем токе нагрузки применяют на фазу несколько полос, собранных в общий пакет и укрепленных совместно на опорных изоляторах. Расстояние между полосами в пакете нормально составляет толщину одной полосы, что необходимо для охлаждения шины в пакете. С увеличением числа полос на фазу допустимая нагрузка возрастает непропорционально числу полос в пакете. При переменном токе, кроме того, еще сказывается эффект близости (подробнее см. раздел). Все это приводит к тому, что нагрузочная способность пакета из нескольких шин меньше, чем суммарная нагрузочная способность того же количества одинаковых шин таких же размере.
Для того чтобы в условиях эксплуатации не имело места превышение допустимых потерь напряжения, шинопроводы рассчитываются по потерям напряжения, как изложено в разделе.
ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ ДЛЯ НЕИЗОЛИРОВАННЫХ ШИН
Допустимые длительные токи для окрашенных шин приведены в таблицах ниже. Они приняты из расчета допустимой температуры их нагрева + 70 °С при температуре воздуха +25 °С.
При расположении шин прямоугольного сечения плашмя токи, приведенные в таблице для шин прямоугольного сечении, должны быть уменьшены на 5 % для шин с шириной полос до 60 мм и на 8 % для шин с шириной полос более 60 мм.
При выборе шин больших сечений необходимо выбирать наиболее экономичные но условиям пропускной способности конструктивные решения, обеспечивающие наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения (уменьшение количества полос в пакете, рациональная конструкция пакета, применение профильных шин и т.п.).
Допустимый длительный ток для шин круглого и трубчатого сечений
Допустимый длительный ток для шин прямоугольного сечения
Допустимый длительный ток для четырехполосных шин с расположением полос по сторонам квадрата («полый пакет»)
Допустимый длительный ток для шин коробчатого сечения
📽️ Видео
Как определить сечение провода.Скачать
Как определить сечение кабеля?Скачать
Как определить площадь сечения провода. Выбор провода или кабеля в зависимости от нагрузки.Скачать
Провода, токопровод, шиныСкачать
Подключая автоматы гребенкой, знай об этомСкачать
Всем электрикам! Допустимый длительный ток для проводов. Полный разбор Таблицы 1.3.4 ПУЭ!Скачать
Как рассчитать нагрузку кабеля быстро и правильно? Какую нагрузку выдерживают кабеля?Скачать
Как выбрать провод, автоматы и УЗО? Как рассчитать сечение кабеля, силу тока, мощность.Скачать
Что означает МАРКИРОВКА НА ШИНАХ / Значение всех цифр и букв на резинеСкачать
АЛЮМИНИЕВАЯ ШИНА-400А ТОКАСкачать
Что означает маркировка на шинах! Значение цифр и букв на резине.Скачать
5 ошибок при расключении распределительных коробок.Скачать
Почему чаще отгорает ноль, а не фаза? #энерголикбезСкачать
Выбор сечения кабеляСкачать