В двухтактных двигателях рабочий цикл совершается за два такта (за один оборот коленчатого вала), в то время как у четырехтактных двигателей это совершается за 4 такта (2 оборота коленчатого вала). В отличие от четырехтактных двигателей в двухтактных очистка рабочего цилиндра от продуктов сгорания и наполнение его свежим зарядом, т. е. процессы газообмена, происходят только при движении поршня вблизи НМТ, практически одновременно. При этом очистка цилиндра от выпускных газов осуществляется путем вытеснения их не поршнем, а предварительно сжатым до определенного давления воздухом или горючей смесью. На рисунке 3.1 приведены схемы наиболее распространенных в настоящее время двухтактных двигателей.
Рисунок 3.1. Схемы двухтактных двигателей: а — петлевая; 6 — прямоточная клапанно-щелевая; в — прямоточная щелевая с противоположно движущимися поршнями; 1 — впуск свежего воздуха; 2 — выпуск отработавших газов; 3 — форсунка; 4 — поршень; 5 — поршень, управляющий впуском; 6 — поршень, управляющий выпуском; 7 — продувочный насос
Предварительное сжатие воздуха или смеси производится в специальном продувочном насосе или компрессоре, выполненном в виде отдельного агрегата. В небольших двигателях в качестве продувочного насоса иногда используют внутреннюю полость картера (кривошипная камера) и поршень двигателя. В процессе газообмена в двухтактных двигателях некоторая часть воздуха или горючей смеси неизбежно удаляется из цилиндра вместе с выпускными газами через выпускные органы. Эта утечка воздуха или горючей смеси учитывается при выборе подачи продувочного насоса или компрессора.
Петлевая схема газообмена (рисунок 3.1, а) значительно упрощает конструкцию двигателя по сравнению с клапанно-щелевой, но при этом ухудшается качество газообмена и возникают потери воздуха или смеси при наполнении. Петлевая схема газообмена отличается большим разнообразием конструктивного выполнения и применяется в двигателях различного назначения (от маломощных для мопедов и до крупных мощностью в несколько десятков тысяч киловатт для судов).
Прямоточные схемы газообмена делятся на 2 типа: прямоточно-клапанные (рисунок 3.1., б) и прямоточно-щелевые (рисунок 3.1., в). Прямоточно-клапанные схемы газообмена широко применялись на всех размерностях дизелей и в настоящее время, среди промышленных двухтактных двигателей, остались только они. Далее будет подробно описана работа двухтактного двигателя на этом типе дизеля.
Прямоточно-щелевая схема газообмена с противоположно движущимися поршнями (рисунок 3.1, в), в которой один поршень управляет впускными окнами, а другой — выпускными, обеспечивает высокое качество газообмена.
Для предварительного сжатия горючей смеси или воздуха, как было указано выше, в двухтактных двигателях может быть использована внутренняя полость картера (кривошипная камера). Такие двигатели называются двигателями с кривошипно-камерной схемой газообмена. Они имеют герметично закрытый картер, который и служит продувочным насосом. При движении поршня 1 от НМТ к ВМТ объем пространства под ним увеличивается и давление падает ниже атмосферного, т.е. в кривошипной камере 2 создается вакуум. Вследствие этого атмосферный воздух устремляется в картер через автоматически действующий впускной клапан. При обратном движении поршня до момента открытия впускных окон происходит сжатие свежего заряда в кривошипной камере. После открытия впускных окон сжатый свежий заряд вытесняется из камеры в цилиндр. Двухтактные двигатели с кривошипно-камерной схемой газообмена отличаются простотой устройства и будут подробно рассмотрены позже. Однако при данном способе газообмена очистка цилиндра и наполнение его свежим зарядом ухудшаются, в результате чего уменьшается мощность двигателя, увеличивается расход топлива.
Традиционно работа двухтактного двигателя объясняется на примере прямоточного клапанно-щелевого двигателя. На рисунке 3.2 приведена схема работы двухтактного двигателя с внутренним смесеобразованием и прямоточной клапанно-щелевой схемой газообмена. Основными особенностями устройства двигателя этого типа являются:
Видео:Как работает двигатель внутреннего сгорания автомобиля?Скачать
- впускные окна 8, расположенные в нижней части цилиндра, высота которых составляет около 10 . 20% хода поршня;
- открытие и закрытие впускных окон производится поршнем 3 при его движении в цилиндре;
- выпускные клапаны 4, размещенные в крышке цилиндра, с приводом от распределительного вала, частота вращения которого обеспечивает открытие клапанов один раз за один оборот коленчатого вала;
- продувочный насос 2, нагнетающий воздух под давлением в ресивер для очистки цилиндра от продуктов сгорания и наполнения свежим зарядом.
Рисунок 3.2. Схема работы двухтактного прямоточного клапанно-щелевого двигателя: а — первый такт (сгорание, расширение, выпуск, продувка и наполнение); б — второй такт (выпуск, продувка и наполнение, сжатие); 1 — впускной патрубок; 2 — продувочный насос; 3 — поршень; 4 — выпускные клапаны; 5 — форсунка; 6 — выпускной патрубок; 7 — воздушный ресивер; 8 — впускное окно
Рабочий цикл в двигателе осуществляется следующим образом:
- Первый такт соответствует ходу поршня от ВМТ к НМТ. В цилиндре только что произошло сгорание (линия cz) и начался процесс расширения газов, т. е. осуществляется рабочий ход. Перед тем, как поршень достигнет НМТ (
Читайте также: Расход топлива камаз 4308 с двигателем камминз 6 цилиндров
75° . 65° до НМТ) в крышке цилиндра открываются выпускные клапаны, и продукты сгорания начинают вытекать из цилиндра в выпускной патрубок, при этом давление в цилиндре резко падает (линия zn). Двигаясь дальше к НМТ поршень откроет впускные окна (
Следует еще раз заострить внимание, что у двухтактного двигателя большинство процессов совмещено по времени, и поэтому однозначно их отделить (как в четырехтактном двигателе) сложно, но все 4 процесса: рабочий ход, выпуск, впуск, сжатие так же как и в четырехтактном двигателе должны пройти. Без осуществления данного порядка чередования процессов осуществить рабочий цикл невозможно. Тем не менее, двигатель называется двухтактным, так как для осуществления рабочего цикла необходимо затратить 2 перемещения поршня из одной мертвой точки в другую.
Из индикаторной диаграммы рабочего цикла двухтактного двигателя видно, что на части хода поршня, когда происходит газообмен, полезная работа очень мала, т. е. практически не совершается.
Объем Vп, соответствующий этой части хода поршня, называется потерянным.
Тогда объем, описываемый поршнем при движении от точки b, определяющей момент начала сжатия, до ВМТ и называемый действительным рабочим объемом, рассчитывается по формуле
Видео:Работа двигателей наглядно с разным количеством цилиндров.Скачать
.
Используя действительный рабочий объем следует определить и действительную степень сжатия:
.
Тогда геометрическая степень сжатия выражается той же формулой, что и для четырехтактных двигателей:
.
Отношение потерянного объема Vп к геометрическому объему Vh представляет собой долю потерянного объема на процесс газообмена:
.
Видео:Принцип работы двигателя. 4-х тактный двигатель внутреннего сгорания (ДВС) в 3DСкачать
В двухтактных двигателях ψ = 10 . 38 %.
Из сравнения рабочих циклов четырех- и двухтактных двигателей следует, что при одинаковых размерах цилиндра и частотах вращения мощность двухтактного двигателя значительно, больше. Поскольку число рабочих циклов больше в 2 раза, ожидаемый рост мощности двухтактного двигателя выше в 2 раза. В действительности мощность двухтактного двигателя увеличивается приблизительно в 1,5 . 1,7 раза вследствие потери части рабочего объема, ухудшения очистки и наполнения, а также затрат мощности на приведение в действие продувочного насоса. К преимуществам двухтактных двигателей следует отнести большую равномерность крутящего момента, так как полный рабочий цикл осуществляется при каждом обороте коленчатого вала (а не за два, как в четырехтактных). Существенным недостатком двухтактного процесса по сравнению с четырехтактным является малое время, отводимое на процесс газообмена. Очистка цилиндра от продуктов сгорания и наполнение его свежим зарядом более совершенно происходят в четырехтактных двигателях. Кроме того, в двухтактном двигателе температура поршня, крышки цилиндра и клапанов выше, чем в четырехтактном.
При внешнем смесеобразовании в результате продувки цилиндра горючей смесью она частично выбрасывается через выпускные окна, поэтому двухтактный процесс чаще применяется в дизелях. Исключение составляют мотоциклетные, лодочные и другие двигатели небольшой мощности, для которых большее значение имеют простота и компактность конструкции, чем экономичность.
Как в четырехтактных, так и двухтактных двигателях, рабочие процессы осуществляются только в одной полости цилиндра, расположенной над поршнем. Такие двигатели принято называть двигателями простого действия.
Для увеличения цилиндровой мощности можно использовать также полость, расположенную под поршнем. Двигатели, в которых рабочие циклы осуществляются в полостях, расположенных с обеих сторон поршня, называются двигателями двойного действия (рисунок 3.3). Увеличение мощности двигателей двойного действия по сравнению с двигателями простого действия составляет только 80 . 85% вследствие уменьшения рабочего объема нижней полости из-за проходящего через эту полость штока.
Читайте также: Опрессовка блока цилиндров что это такое
.
Рисунок 3.3. Схема устройства двухтактного двигателя двойного действия: а — схема; б — реальный двигатель (D=820 мм, S=1500 мм); 1, 3 — нижняя и верхняя крышки; 2 — рабочий цилиндр; 4 — поршень; 5 — шток; 6 — крейцкопф (ползун); 7 — шатун
Ввиду значительного усложнения конструкции и малой надежности двигатели двойного действия закончили производить в 50-х годах 20-ого века. Необходимое увеличение цилиндровой мощности достигается применением наддува, что проще и надежнее.
Контрольные вопросы и задания
- Дайте определение верхней мертвой точке и нижней мертвой точке;
- Дайте определение двигателей внутреннего сгорания и двигателей с внешним подводом теплоты;
- Дайте определение рабочему циклу двигателя;
- Напишите формулу для расчета рабочего объема цилиндра поршневого ДВС;
- Дайте определение и напишите формулу для расчета степени сжатия поршневого ДВС, раскройте значение и смысл входящих в формулу элементов;
- Дайте определение такта;
- Перечислите последовательно все такты четырехтактного двигателя внутреннего сгорания;
- Расскажите о процессах происходящих в каждом из тактов четырехтактного ДВС;
- Дайте определение для двигателей с внешним и внутренним смесеобразоанием.
Рекомендуемая дополнительная литература
- Двигатели внутреннего сгорания: устройство и работа поршневых и комбинированных двигателей/ В. П. Алексеев, В. Ф. Воронин, Л. В. Грехов и др.; Под общ. ред. А. С. Орлина,М. Г. Круглова., М.: Машиностроение, 1990
- Учебник для втузов по специальности «Двигатели внутреннего сгорания» / Д. Н. Вырубов, Н. А. Иващенко, В. И. Ивин и др.; Под ред. А. С. Орлина, М. Г. Круглова. — 4-е изд., перераб. и доп. — М.: Машиностроение, 1983. — 372 с.
- Конструирование двигателей внутреннего сгорания: Учебник для студентов высших учебных заведений, обучающихся по специальности «Двигатели внутреннего сгорания» направления подготовки «Энергомашиностроение» / Н. Д. Чайнов, Н. А. Иващенко, А. Н. Краснокутский, Л. Л. Мягков; под. ред. Н. Д. Чайнова. М.: Машиностроение, 2008. 496 с., ил.
- Jorn Dragsted. The first 50 years of turbocharged 2-stroke, crosshead, marine diesel engines. CIMAC Central Secretariat, Lyoner Str. 18, 60528 Frankfurt am Main, Germany. 2013. 98 pages.
- Doug Woodyard. Pounder’s Marine Diesel Engines and Gas Turbines. Eighth edition. Elsevier Butterworth-Heinemann. Linacre House, Jordan Hill, Oxford OX2 8DP. 200 Wheeler Road, Burlington, MA 01803. 2004. pp.915
Процессы газообмена в поршневых двигателях. Пути улучшения процессов газообмена.
Действительный цикл двигателя состоит из ряда последовательных процессов, которые взаимосвязаны и зачастую перекрывают друг друга. В них происходит изменение количества и состава рабочего тела, а также теплообмен между рабочим телом и деталями, формирующими камеру сгорания.
Видео:Как работает двухтактный двигатель скутера | АнимацияСкачать
Газообмен- совокупность процессов выпуска и впуска, обеспечивающих смену рабочего тела.
Качество очистки цилиндра от отработавших газов и эффективность наполнения его свежим зарядом определяют показатели рабочего процесса двигателя. В действительном цикле начало и конец процессов газообмена (впуска и выпуска) не соответствуют началу и концу тактов впуска и выпуска.
Процессы газообмена взаимосвязаны друг с другом и оказывают существенное влияние на другие процессы, происходящие в действительном цикле. Например, создание направленного движения заряда в цилиндре путем профилирования и расположения впускных каналов в головке цилиндров способствуют улучшению смесеобразования и сгорания.
Для повышения эффективности газообмена необходимо обеспечить возможно большую пропускную способность проходных сечений клапанов f, см 2 , называемую «время—сечение». Графически она представляет площадь под кривой текущей площади проходного сечения клапана между мертвыми точками в зависимости от времени.
Работа газообмена (насосные потери) в двигателях без наддува и при газотурбинном наддуве отрицательна. При применении приводного компрессора работа газообмена положительна, однако возрастают затраты его на привод.
Процесс выпуска отработавших газов начинается в конце такта расширения за 40. 70° поворота коленчатого вала (ПКВ) до прихода поршня в НМТ (точка b’ на рис. 1.2). При этом давление в цилиндре двигателя без наддува составляет 0,4 . 0,6 МПа. Выпуск отработавших газов вначале происходит со скоростью истечения газов через клапанную щель 500. 700 м/с. В НМТ завершается период свободного выпуска, в течение которого из цилиндра удаляется 50. 70 % отработавших газов.
При движении поршня от НМТ к ВМТ выпуск отработавших газов происходит вытеснением поршнем — принудительный выпуск.
В начале выпуска из-за резкого изменения давления образуется волна давления в системе выпуска, которая распространяется в сторону открытого конца трубопровода. Здесь она отражается, теряя часть энергии, и затем в виде волны разрежения перемещается в обратном направлении к выпускному клапану и снова отражается, и т.д.
Читайте также: Цилиндры минераловатные в новосибирске
Момент начала выпуска (открытия выпускного клапана) выбирают исходя из компромисса между необходимостью обеспечения хорошей очистки цилиндра при минимальной затрате работы на принудительный выпуск (желательно открывать раньше) и уменьшения потерь полезной работы газов в период предварения выпуска (желательно открывать позже).
Газообмен в период перекрытия (одновременного открытия) клапанов в области ВМТ имеет свои особенности. В двигателях без наддува для лучшей организации газообмена впускной клапан открывается за 10. 30° ПКВ до прихода поршня в ВМТ, а выпускной клапан закрывается после прохождения поршнем ВМТ через 10. 50° ПКВ. В двигателе с наддувом эти углы увеличивают. Желательно, чтобы в этот период рк > р > рр. Тогда через впускной клапан в цилиндр поступает свежий заряд, а через выпускной удаляются отработавшие газы, т.е. происходит продувка цилиндра, позволяющая обеспечить хорошую очистку цилиндра от отработавших газов и увеличить поступление свежего заряда в процессе впуска.
Видео:Общее устройство бензиновых и дизельных двигателей внутреннего сгоранияСкачать
В двигателях с наддувом от приводного нагнетателя рк > рр. При газотурбинном наддуве давление на впуске рк может быть больше, равно или меньше давления на выпуске рр.
В двигателях без наддува обычно рк рр.
При р > рр часть свежего заряда может переместиться из цилиндра в выпускной трубопровод. К тому же при рр > рк отработавшие газы могут возвращаться в цилиндр, а смесь свежего заряда и отработавших газов — во впускной трубопровод, т.е. будет происходить обратное течение газов. Оно может возникать в двигателе с искровым зажиганием на режимах холостого хода, когда дроссельная заслонка сильно прикрыта и при этом рр / рк > 2.
Процесс впуска свежего заряда начинается во время перекрытия клапанов. При отсутствии наддува свежий заряд поступает в цилиндр под действием разрежения при перемещении поршня к НМТ, а при наддуве он нагнетается в цилиндр компрессором.
После начала открытия впускного клапана (точка А), когда рк > р, начинается наполнение цилиндра свежим зарядом. Количество свежего заряда, поступающего в цилиндр двигателя, определяется разностью между давлением окружающей среды или давлением после компрессора и давлением в цилиндре р, которая изменяется в процессе впуска.
После прохождения поршнем НМТ в ходе процесса сжатия при условии рк > р впуск свежего заряда будет продолжаться до момента рк = р (точка В). Эта фаза впуска называется дозарядкой. Она обусловлена действием сил инерции и волновыми явлениями в системе впуска. В итоге впускной клапан закрывают после прохождения поршнем НМТ через 35. 85° ПКВ.
При малой частоте вращения инерция свежего заряда небольшая, а время, отводимое на процесс впуска, велико. Поэтому при р > рк происходит запаздывание закрытия впускного клапана и поршень вытесняет часть заряда из цилиндра обратно во впускную систему, т. е. происходит обратный выброс.
В процессе впуска внутренние поверхности впускного трубопровода, канала в головке и камеры сгорания имеют температуру больше, чем свежий заряд и нагревают его. Поэтому масса свежего заряда уменьшается и наполнение цилиндра снижается.
Параметры процессов газообмена. В цилиндр двигателя поступает свежий заряд, который после завершения газообмена, смешиваясь с отработавшими газами, оставшимися в цилиндре после закрытия впускных и выпускных клапанов, образует рабочую смесь.
Условно будем считать, что свежий заряд поступает в цилиндр и заполняет рабочий объем Vh, а остаточные газы — объем камеры сгорания Vc.
Качество очистки цилиндра от продуктов сгорания характеризует коэффициент остаточных газов γ — отношение количества молей остаточных газов Мr к количеству молей свежего заряда М1ц, заполнившего цилиндр после завершения процесса впуска: γ = Мr / М1ц.
Видео:Порядок работы цилиндров в рядном 4 цилиндровом двигателеСкачать
Так как Vc = Vh /(ε — 1), то с увеличением ε уменьшается γ. Поэтому у дизелей γ значительно меньше, чем у двигателей с искровым зажиганием. В двухтактных двигателях γ выше из-за ухудшения процессов продувки и наполнения.
Качество процесса наполнения цилиндра свежим зарядом характеризует коэффициент наполнения ηV — отношение действительного количества свежего заряда М1ц, заполнившего цилиндр после завершения газообмена, к тому количеству свежего заряда МТ, которое теоретически могло бы заполнить рабочий объем цилиндра Vh при атмосферных условиях р0, Т0 (в четырехтактных двигателях без наддува) или при рК, ТК (в четырехтактных двигателях с наддувом и двухтактных двигателях): ηV = М1ц /МТ
Для бензинового двигателя при определении ηV учитывают только воздух. Влияние топлива, содержащегося в смеси, на ηV не существенно.
💥 Видео
Как работает Двигатель Внутреннего Сгорания ПРОСТЫМИ СЛОВАМИ #ShortsСкачать
Принцип действия поршневого авиационного двигателяСкачать
Двигатели внутреннего сгорания, 1976Скачать
Работа двигателя внутреннего сгоранияСкачать
Все конфигурации двигателя | B2B На РусскомСкачать
Почему на современных двигателях постоянно образуются задиры в поршневой?Скачать
Как устроен автомобильный двигательСкачать
Самый НЕОБЫЧНЫЙ двигатель!Скачать
Устройство двигателя - Блок цилиндровСкачать
Устройство двигателя - ПоршеньСкачать
Двигатель внутреннего сгорания в разрезе...Скачать
Почему поршни двигателя бывают разной формы: выпуклые, вогнутые, фигурныеСкачать
работа звездообразного двигателяСкачать
Система смазки автомобильного двигателя.Скачать