Гбц с электромагнитными клапанами

Авто помощник

Описываемые устройства относятся к поршневым двигателям внутреннего сгорания, а более конкретно — к их впускным и выпускным клапанам. Область применения — поршневые двигатели с программным управлением процессами газораспределения от электронной автоматики.

Механические клапаны

Гбц с электромагнитными клапанами

Основные преимущества механических клапанов:

• функциональная надежность ГРМ с механическими клапанами;

• минимальный уровень ударных вибраций в ГРМ с механическими клапанами
и, как следствие, бесшумность его работы.

Основной недостаток механического клапана

Электромагнитные клапаны

Видео:Koenigsegg изнутри: двигатель Freevalve со свободными клапанамиСкачать

Koenigsegg изнутри: двигатель Freevalve со свободными клапанами

Наиболее перспективным для работы в ГРМ с управлением от электронной автоматики является клапан с непосредственным электромагнитным приводом (рис. 2), который открывается электромагнитом 8, 9, 10 при подаче на него управляющего электрического сигнала, а закрывается — возвратной пружиной 1. Основное преимущество электроклапана — работа в ГРМ без распределительного вала с управлением от электронной автоматики.
При подаче постоянного управляющего напряжения на обмотку 9 электромагнита его магнитопровод, состоящий из неподвижного ярма 8 и магнитопроводящей шайбы (подвижного якоря) 10, смыкается и магнитопроводящая шайба 10 своим ходом «вниз» толкает клапанный стержень 3, тем самым открывая запорный узел 2, 4 клапана. После прекращения действия постоянного управляющего напряжения ток в обмотке 9 электромагнита прерывается, магнитное поле в магнитопроводе 8, 10 исчезает, магнитопроводящая шайба 10 под действием возвратной пружины 1 поднимается «вверх» и запорный узел 2,4 электроклапана закрывается.

Электромагнитный клапан обладает тремя существенными недостатками:
• для преодоления усилия возвратной запорной пружины 1 электромагнит 8, 9, 10 должен обладать значительной тяговой силой, что делает его габаритные размеры и индуктивность недопустимо большими, а потребление энергии от бортсети автомобиля — значительным;
• при резком падении величины постоянного управляющего напряжения, например, при пуске двигателя в холодное зимнее время, электромагнит 8, 9, 10 может не преодолеть возвратного усилия запорной пружины 1 и тогда клапан останется закрытым;
• при открывании и закрывании электроклапана имеют место громкие щелчковые соударения: при открывании — магнитопроводящей шайбы (якоря) 10 об ярмо 8, при закрывании — клапанной головки 2 о посадочную фаску 4. Как следствие, работа электроклапана сопровождается значительным шумом. Устранение указанных недостатков электромагнитного клапана возможно путем уменьшения его габаритных размеров, повышения надежности и понижения шумности срабатывания, а также путем автоматизации управления рабочими процессами с применением электронной автоматики.
В результате поиска приемлемых технических решений и конструктивных вариантов исполнения для газораспределительных электромагнитных клапанов появился ряд изобретений по классам FD и FL (патент Франции № 2307958, F01L : 9/04 1976 г.; патент ФРГ № 32630512, F02D : 13/02 1976 г.; авторское свидетельство СССР № 1395844, F01L : 9/04 1988 г.; патент РФ № 2045662, F01L : 9/04 и другие), суть которых сводится к уменьшению габаритных размеров, массы, потребляемой электрической энергии, понижению инерционности срабатывания, повышению бесшумности и надежности работы этих изделий.

Электромагнитный клапан с пружинным ударным устройством

Гбц с электромагнитными клапанами

Основная идея этого изобретения состоит в том, что вышеописанный электроклапан (рис. 2), которому на рис. 3 соответствуют позиции 1, 2, 3, 6, 7, 8, дополнен пружинным ударным устройством (на рис. 3 позиции 4,9, 10, 11, 12). Ударное устройство взводится втяжным электромагнитом 5, 9, 10, 11, а спускается «на удар» спусковым электромагнитом (на рис. 3 поз. 14, 15, 16, 17, 18) и возвратной пружиной 12, ослабленной по сравнению с основной пружиной 8. Управление электромагнитным приводом клапана осуществляется без применения распределительного вала — от электрических сигналов, сформированных в релейно-электронном устройстве управления, что позволяет изменять фазы газораспределения.

Когда клапан закрыт, все три электромагнита обесточены и клапанная головка 6 надежно и плотно прижата к посадочной фаске 20 возвратной запорной пружиной 8. Фиксирующий шток 14, установленный на якоре 15 спускового электромагнита, находится в зажатом состоянии под головкой 11 якоря пружинного ударного устройства. Когда клапан открывается, электромагниты в определенной последовательности включаются на срабатывание путем подачи импульсов постоянного напряжения на их обмотки от релейно-электронного блока управления. Последовательность срабатывания электромагнитов при открывании клапана следующая. Сначала, с очень коротким опережением, срабатывают втяжной и спусковой электромагниты. Под воздействием втяжного электромагнита головка 11 вместе с якорем 9,10 поднимается вверх, а фиксирующий шток 14 под воздействием спускового электромагнита втягивается якорем 15 в катушку 18, тем самым массивный якорь 9,10,11 подготавливается для срабатывания «на удар». Далее включается основной открывающий электромагнит и одновременно отпускается (обесточивается) втяжной электромагнит, а спусковой электромагнит остается в состоянии удержания якоря 15 в катушке 18. В результате такой коммутации открывающий электромагнит напрягает основную возвратную запорную пружину 8 и после ударного (сталкивающего) воздействия со стороны массивного якоря 9,10,11 (который после обесточивания катушки 5 втяжного электромагнита приводится в мгновенное движение возвратной пружиной 12) перемещает основной якорь 7 и клапанную головку б «вниз» — газораспределительный клапан открывается и удерживается в открытом состоянии, пока открывающий электромагнит находится под током.

Читайте также: Регулировка клапанов змз 238

Видео:Шокирующие новости автопрома Магнитные клапаны из ТорбеевоСкачать

Шокирующие новости автопрома Магнитные клапаны из Торбеево

При закрывании клапана сначала отпускается (обесточивается) спусковой электромагнит и под действием малой возвратной пружины 16 его якорь 15 выталкивается из катушки 18, а фиксирующий шток 14 перемещается под головку 11 массивного якоря 9,10,11. Далее одновременно обесточиваются (отпускаются) основной открывающий и втяжной электромагниты. Основная возвратная запирающая пружина 8 поднимает якорь 7 и клапанную головку б «вверх» — клапан закрывается, а массивный якорь 9,10,11 обесточенного втяжного электромагнита под действием возвратной пружины 12 несколько опускается «вниз» до упора головки 11 в фиксирующий шток 14. Последним движением реализуется фиксация пружинного ударного устройства (массивного якоря 9,10,11 и возвратной пружины 12) во взведенном состоянии до следующего срабатывания клапана на открывание.

Целью описанного изобретения было снижение потребляемой электрической мощности электромагнитным клапаном, которая достигнута оригинальным способом — ударом по якорю слаботочного и относительно небольшого открывающего электромагнита массивным якорем пружинного ударного устройства.

Однако такой электромеханический клапан не может быть использован в ГРМ автомобильных двигателей, так как значительные шумы, возникающие при его срабатывании от соударений подвижных компонентов, здесь не устранены. Функциональная надежность электромагнитного клапана с пружинным ударным устройством также недостаточно высокая, так как для его устойчивой работы требуется синхронизация удара массивного якоря с началом движения якоря открывающего электромагнита. Реализовать синхронность двух механических взаимодействий при отсутствии между ними постоянной кинематической связи и при высокой скорости срабатывания — практически невозможно.

Электромагнитный клапан с демпфирующим устройством

Значительное понижение шума, возникающего при работе электромагнитного клапана возможно с применением гидравлической, пневматической или электромагнитной амортизации; а в случае использования тяговых электромагнитов — с применением в них соленоидных тяговых катушек, в магнитопроводе которых отсутствуют граничные (краевые) опоры для подвижного якоря.

На рис. 4 показано устройство электромагнитного клапана с соленоидным электромагнитом, с традиционной витой возвратной пружиной и с электромагнитным демпфером, который гасит шумы и амортизирует ударные колебания якоря (патент РФ № 2045662,1992 г.).

Гбц с электромагнитными клапанами

Видео:Koenigsegg deescribes Freevalve - двигатель без распредваловСкачать

Koenigsegg deescribes Freevalve - двигатель без распредвалов

Как видно из чертежа, электромагнитный клапан включает в свой состав обычный газораспределительный клапан 1 механического принципа действия с жесткой возвратной пружиной 2, над которыми с помощью крепежной стойки 3 установлен электромагнитный привод 4. Электромагнитный привод клапана состоит из трехсекционного соленоида 5, 6, 7, во внутрь которого вставлена труба 8, выполняющая роль магнитопровода с тремя кольцеобразными полюсами 9,10,11. Через трубу 8 соосно с ней пропущен немагнитный стержень 12, на который установлены два тяговых якоря 13 и 14, а между ними — один якорь 15, «плавающий» по стержню 12. Все три якоря по высоте соответствуют «своим» кольцеобразным полюсам, имеют цилиндрическую форму и выполнены из магнитомягкого материала. Тяговые якоря 13,14,15 совместно с соленоидом 5, 6, 7, магнитопроводом 8 и кольцеобразными полюсами 9, 10,11 образуют открывающий электромагнит. При подаче импульсов постоянного напряжения (управляющих сигналов от ЭБУ) на секции 5, 6, 7 соленоида открывающий электромагнит срабатывает и открывает газораспределительный клапан 1. При этом элементы открывающего электромагнита занимают положение, показанное на рис. 4,6, и жесткая возвратная пружина 2 сжимается.

Читайте также: Прибор для наладки балансировочных клапанов

Теперь, чтобы клапан закрылся, достаточно обесточить секции 5 и 7 соленоида, и жесткая возвратная пружина вытолкнет всю подвижную часть электроклапана «вверх», а клапанная головка 1 плотно прижмется к посадочной фаске 16. Элементы отрывающего электромагнита занимают положение, показанное на рис. 4,а. Чтобы посадка головки 1 в фаску 16 проходила плавно, без соударений, электромагнитная секция «полюс 10 — плавающий якорь 15» на время закрывания клапана остается под удерживающим током. Это обеспечивает амортизацию удара головки клапана о посадочную фаску, так как малый соленоидный электромагнит совместно с пружинами 17 и 18 обеспечивают демпфирование движения клапана 1 в конце его хода. При открывании клапана соударений в его подвижных частях не происходит, так как в соленоидном электромагните нет жестких упоров в краевых положениях.

Но и такой электромагнитный клапан не свободен от существенных недостатков. Во-первых, соленоидный электромагнит всегда имеет большую протяженность магнитопровода и уменьшенную тяговую силу по сравнению со смыкающимися электромагнитами. Во-вторых, движение ферромагнитного якоря в магнитном поле соленоида всегда сопровождается дрожанием (вибрационными колебаниями) якоря в точках его остановки и изменения направления движения. В-третьих, и это основной недостаток, с применением соленоида в электромагнитном приводе практически невозможно создать электроуправляемый клапан ГРМ с регулируемым ходом (степенью и скоростью открывания).

Электромагнитный клапан без возвратной запорной пружины

Известно [3], что для ГРМ автомобильных поршневых двигателей с автоматическим электронным управлением более приемлема конструкция электроклапана, в кото рой отсутствует возвратная запорная пружина, так как в таком случае тяговая сила открывающего электромагнита может быть значительно понижена, а электромагнит при этом получается малогабаритным и с приемлемым потреблением электроэнергии.

На реализацию идеи создания электромагнитного клапана, надежно работающего без жесткой возвратной запорной пружины с управлением от электронной автоматики, направлены поиски специалистов многих западных автомобилестроительных фирм.

Видео:Новая ГБЦ. Стоит ли разбирать перед установкой ???Скачать

Новая ГБЦ. Стоит ли разбирать перед установкой ???

На рис. 5 показан газораспределительный клапан, который работает без возвратной пружины, но с двумя электромагнитами, первый из которых (см. поз. 6) открывающий, а второй (см. поз. 8) закрывающий.

Гбц с электромагнитными клапанами

Как видно из чертежа, электромагнитный клапан содержит якорь 7, общий для обоих электромагнитов. Якорь 7 жестко закреплен на клапанном стержне 3 с помощью натяжной гайки 9 с контршайбой и зажимных трубок 10, выполненных из немагнитного материала. Электромагниты б и 8 зафиксированы в немагнитной гильзе 12, которая с помощью винтов через термоизоляционную прокладку 13 приворачивается к головке 14 блока цилиндров. Гильза 12 в нижней части имеет направляющую втулку 5 для клапанного стержня 3, а в верхней части — немагнитную крышку 11 с направляющей втулкой. Крышка 11 привернута к гильзе 12 винтами.

Когда оба электромагнита обесточены, то пружина 1, которая рассчитана только на преодоление массы подвижной части клапана, поднимает ее «вверх» и неплотно закрывает клапан. При подаче импульса постоянного напряжения от ЭБУ на обмотку первого открывающего электромагнита б ферромагнитный якорь 7 опускается «вниз» и открывает клапан. Клапан остается в устойчиво открытом состоянии до тех пор, пока электромагнит б включен (находится подтоком), а электромагнит 8 обесточен. Для закрывания клапана электромагнит б (открывающий) обесточивается, а на электромагнит 8 (закрывающий) подается импульс постоянного напряжения (управляющий сигнал от ЭБУ). При этом якорь 7 поднимается электромагнитом 8 «вверх» и клапанная головка 2 с требуемым усилием прижимается к посадочной фаске 4 — клапан закрывается и остается в таком состоянии до очередного срабатывания открывающего электромагнита б.

Для предотвращения жестких соударений, на якоре 7 установлено не менее трех отбойников 15 из жесткой ударостойкой резины.

Моменты открывания и закрывания электромагнитного клапана формируются в вычислительном устройстве электронной системы автоматического управления поршневым двигателем (ЭСАУ-Д). При этом, входными сигналами, по которым адаптируется программа управления клапанами, являются сигналы входных датчиков для ЭСАУ-Д.

Видео:Гбц от 140 л.с. проблема с клапанами!Скачать

Гбц от 140 л.с. проблема с клапанами!

Электромагнитный клапан без возвратной пружины, хотя и удовлетворяет требованиям по габаритным, энергетическим и акустическим показателям, но не обеспечивает регулировку скорости и глубины открывания клапанной головки.

Читайте также: Клапан вентиляции картерных газов мерседес 204

Электромагнитный клапан с пневматическим амортизатором

В настоящее время идут интенсивные разработки электромагнитных клапанов ГРМ с внутренней пневматический амортизацией.

На рис. 6 показана конструкция такого клапана, который разработан и запатентован фирмой FEV МТ (ФРГ) 31.07.1997 года (DE 197.33.186А1, класс: F01L 9/04, публикация 4.02.1999 г.).

На рис. 6 приняты следующие обозначения:
1 — газораспределительный клапан; 2 — клапанная фаска; 3 — направляющая втулка; 4 — нижняя пневмокамера; 5 — пневмопоршень с уплотнительным кольцом; 6 — сапунный канал; 7 — обмотка открывающего электромагнита; 8 — магнитопровод открывающего электромагнита; 9 — якорь (подвижная часть) электромагнитного привода; 10 — магнитопровод закрывающего электромагнита; 11 — обмотка закрывающего электромагнита; 12 — верхняя пневмокамера; 13 — корпус верхней пневмокамеры; 14 — клапанный стержень; 15 -пневмонапорный канал; 16 — корпус электромагнитов; 17 — сапун; 18 — пневмоклапан; 19 — электропривод пневмоклапана 18; 20 — пневморессивер; 21 — клапанный штуцер для подачи пневмодавления Рд в рессивер 20; 22 — контакты электрического разъема; 23 — головка блока цилиндра (литье); 24 — датчик управляющего пневмодавления Р в нижней пневмокамере.

Электромагнитный клапан с пневмоамортизатором управляется с помощью двух электромагнитов — открывающего 7, 8 и закрывающего 10, 11. Электромагниты работают также, как и в вышеописанном электромагнитном клапане без возвратной запорной пружины. Спецификой в данном случае, является то, что в конструкции электромагнитного клапана отсутствуют витые упругие возвратные пружины. Их функции выполняет симметричный двухкамерный пневмоамортизатор. В двух пневмокамерах — нижней 4 и верхней 12 расположено по одному пневмопоршню 5, которые жестко закреплены на клапанном стержне 14. Между пневмокамерами (снаружи клапана) установлен пневморессивер 20, который сообщается с камерами через пневмоклапаны 18, приводящиеся в действие с помощью электроприводов 19. Электроприводы, как и основные электромагниты 7, 8 и 10, 11 управляются от электронной системы автоматического управления двигателем (ЭСАУ-Д) по программе, заложенной в «памяти» ЭСАУ-Д. Программное управление процессами газораспределения позволяет изменять фазовые параметры клапанов с адаптацией под все возможные изменения условий и режима работы двигателя. Амортизация механических соударений в электромагнитном клапане реализуется путем управляемого перепускания сжатого воздуха из рессивера 20 в одну из пневмокамер 4 или 12. Стравленный воздух через сапунные каналы 6 и 17 пополняется путем подкачки рессивера от пневмонасоса (на чертеже не показан) через клапанный штуцер 21. Для контроля за величиной управляющего давления Р в нижней пневмокамере 4 установлен датчик 24.

Видео:Технология Koenigsegg Freevalve - преимущества и недостаткиСкачать

Технология Koenigsegg Freevalve - преимущества и недостатки

Работа двустороннего пневмоамортизатора заключается в следующем. Когда клапан 1 открывается электромагнитом 7, 8, нижний пневмоклапан 18 переходит под управление от ЭСАУ-Д (опосредованно через электропривод 19) и, работая в прерывистом режиме, регулирует управляющее давление Р (по сигналу датчика 24) в нижней пневмокамере таким образом, что поршень 5, а вместе с ним и клапан 1 опускаются вниз со скоростью, заданной по программе управления. При этом, когда притяжение якоря 9 усиливается, управляющее давление Р в нижней пневмокамере 4 становится максимальным и равным давлению Рд в рессивере 20. В этот момент нижний пневмоклапан 18 открывается, давление Рд стравливается через нижний сапун 17 и происходит плавное без соударений смыкание якоря 9 с магнитопроводом 8, клапан 1 полностью открывается. Во время открывания клапана воздух из верхней пневмокамеры 12 стравливается через сапунный канал 6, а через верхний пневмоклапан 18 и верхний сапун 17 в пневкамеру 12 поступает воздух из атмосферы. При закрывании клапана 1 электромагнитом 10, 11 пневмоамортизатор работает точно также, как и при открывании, только в обратном направлении.

Относительным недостатком электромагнитного клапана с пневмоамортизатором является необходимость наличия в его конструкции специального пневмонасоса и шипящих сапунных каналов. Однако, в случае применения таких газораспределительных клапанов на грузовых автомобилях, оборудованных системой пневматических тормозов, эти недостатки не имеют существенного значения. Фирма FEV MT намерена использовать свою разработку на дизельных двигателях грузовых автомобилей после 2005 г.

📺 Видео

Изобретение из Мордовии ГРМ в ДВС без клапанных пружин Without valvate springsСкачать

Изобретение из Мордовии ГРМ в ДВС без клапанных пружин Without valvate springs

Стенд для ремонта ГБЦ TWS 1100Скачать

Стенд для ремонта ГБЦ TWS 1100

ГБЦ - неправильная фаска клапана приводит к -50 эксплуатацииСкачать

ГБЦ - неправильная фаска клапана приводит к -50 эксплуатации

ГБЦ. Как притереть клапана головки блока после Валеры.Скачать

ГБЦ. Как притереть клапана головки блока после Валеры.

Состояние фильтра электромагнитного клапана CVVT Киа Рио III на пробеге 337 тыс.кмСкачать

Состояние фильтра электромагнитного клапана CVVT Киа Рио III на пробеге 337 тыс.км

Соленоидные электромагнитные клапаны. Принцип работы, виды.Скачать

Соленоидные электромагнитные клапаны. Принцип работы, виды.

Дозирующий клапан 16кл гбц ВазСкачать

Дозирующий клапан 16кл гбц Ваз

Проверка клапанов на герметичность 👍Скачать

Проверка клапанов на герметичность 👍

Это не учитывают при ремонте ГБЦ. Упругость пружины клапана.Скачать

Это не учитывают при ремонте ГБЦ. Упругость пружины клапана.

Сделать ГБЦ #shortsСкачать

Сделать ГБЦ #shorts

Как проверить прокладку ГБЦ 100вариантСкачать

Как проверить прокладку ГБЦ 100вариант

Почему никто этого не делает при ремонте ГБЦ? #shortsСкачать

Почему никто этого не делает при ремонте ГБЦ? #shorts

Основы ремонта двигателя: ГБЦ часть 1 (зазор клапан-направляющая)Скачать

Основы ремонта двигателя: ГБЦ часть 1 (зазор клапан-направляющая)

Ошибки при ремонте ГБЦ 2108(1118) Торцуем клапана.Экономим на регулировочных шайбахСкачать

Ошибки при ремонте ГБЦ 2108(1118) Торцуем клапана.Экономим на регулировочных шайбах
Поделиться или сохранить к себе:
Технарь знаток