Геометрические фигуры конус призма цилиндр пирамида

Авто помощник

Видео:4 класс. Математика. Геометрические тела: шар, куб, пирамида, призма, цилиндр, конусСкачать

4 класс. Математика. Геометрические тела: шар, куб, пирамида, призма, цилиндр, конус

Геометрические объекты: пирамида, призма, цилиндр, конус и другие

Геометрические фигуры конус призма цилиндр пирамида

3.2.3. геометрические объекты:

пирамида, призма, цилиндр, конус и другие

Пирамида это многогранник, одна грань
которого многоугольник, а остальные грани треугольники с общей вершиной (рисунок 3.54). Пирамида называется правильной, если в основании лежит правильный многоугольник и высота пирамиды проходит через центр многоугольника. Пирамида называется усеченной, если вершина ее отсекается плоскостью.

Многогранником называется геометрический объект, ограниченный совокупностью плоских многоугольников, у которых каждая сторона одного является одновременно стороной другого (но только одного).

Построение графического отображения многогранника сводится к построению проекций его вершин и ребер. Кратко охарактеризуем геометрические свойства некоторых многогранников и выполним их проекции.

Призма – многоугольник, две грани которого (основания призмы) представляют собой равные многоугольники с взаимно параллельными сторонами, а все другие грани – параллелограммы (рисунок 3.55). Название призмы зависит от того, какой многоугольник лежит в ее основании: если треугольник, то призма – треугольная, если четырехугольник, то – четырехугольная и т. д. Если основанием призмы является параллелограмм, то такая призма – параллелепипед. Призма называется прямой, если ее ребра перпендикулярны плоскости основания. Прямоугольный параллелепипед, все ребра которого конгруэнтны между собой, называется кубом.

Призматоид многогранник, ограниченный двумя многоугольниками, расположенными в параллельных плоскостях (они являются его основаниями); его боковые грани представляют собой
треугольники и трапеции, вершины которых служат вершинами и многоугольников оснований (рисунок 3.56).

Многогранник, все грани которого представляют собой правильные и равные многоугольники, называют правильными. Углы при вершинах такого многогранника равны между собой. Существует пять типов правильных многогранников, свойства которых описал более двух тысяч лет назад древнегреческий философ Платон, чем и объясняется их общее название. Каждому правильному многограннику соответствует другой правильный многогранник с числом граней, равным числу вершин данного многогранника. Число ребер у обоих многогранников одинаково.

Тетраэдр правильный четырехгранник. Он ограничен четырьмя равносторонними треугольниками. Это правильная треугольная пирамида.

Гексаэдр правильный шестигранник. Это куб, ограниченный шестью равными квадратами.

Октаэдр – правильный восьмигранник, ограниченный восемью равносторонними и равными между собой треугольниками, соединенными по четыре у каждой вершины (рисунок 3.57).

Икосаэдр – правильный двадцатигранник, ограниченный двадцатью равносторонними и равными треугольниками, соединенными по пять у каждой вершины (рисунок 3.58).

Додекаэдр правильный двенадцатигранник, ограниченный двенадцатью правильными и равными пятиугольниками, соединенными по три у каждой вершины (рисунок 3.59).

Кроме правильных выпуклых многогранников существуют и правильные выпукло-вогнутые многогранники. Их называют звездчатыми (самопересекающимися). Достраивая пересечения продолжений граней Платоновых тел, можно получать звездчатые многогранники. В качестве примера рассмотрим две наиболее простые звездчатые формы.

Звездчатый октаэдр. Восемь пересекающихся плоскостей граней октаэдра отделяют от пространства новые «куски», внешние по отношению к октаэдру. Это малые тетраэдры, основания которых совпадают с гранями октаэдра (рисунок 3.60). Его можно рассматривать как соединение двух пересекающихся тетраэдров, центры которых совпадают с центром исходного октаэдра. Такой звездчатый многоугольник в 1619 г. описал Кеплер и назвал его stella ostangula – восьмиугольная звезда.

Малый звездчатый додекаэдр звездчатый додекаэдр первого продолжения. Он образован продолжением граней правильного выпуклого додекаэдра до их пересечения. Каждая грань выпуклого додекаэдра при продолжении сторон образует правильный звездчатый пятиугольник (рисунок 3.61). Пересекающиеся плоскости граней додекаэдра отделяют от пространства новые «куски», внешние по отношению к додекаэдру. Это двенадцать правильных пятиугольных пирамид, основания которых совпадают с гранями додекаэдра.

Цилиндр геометрический объект, ограниченный цилиндрической поверхностью и двумя плоскостями, называемыми основаниями. В зависимости от угла наклона образующих цилиндрической поверхности к основанию различают прямой цилиндр (угол наклона 90°) и наклонный (рисунок 3.62).

Конус – геометрический объект, ограниченный конической поверхностью и плоскостью, называемой основанием или двумя плоскостями (усеченный конус). Конус может быть прямым (рисунок 3.63) или наклонным.

Шар – геометрический объект, образованный вращением круга вокруг его диаметра (рисунок 3.64). При сжатии или растяжении шар преобразуется в эллипсоид, который может быть получен вращением эллипса вокруг одной из осей: если вращение происходит вокруг большой оси, то эллипсоид называется вытянутым; если вокруг малой – сжатым, или сфероидом (рисунок 3.65).

Тор геометрический объект, образованный при вращении круга вокруг оси, не проходящей через его центр (рисунок 3.66).

Видео:Тема 71. Геометрические тела: шар, куб, пирамида, призма, цилиндр, конусСкачать

Тема 71. Геометрические тела: шар, куб, пирамида, призма, цилиндр, конус

Проекции геометрических тел с примерами и образцами выполнения

Формы деталей, встречающихся в технике, представляют собой сочетание различных геометрических тел или их частей.

Видео:Миникурс по геометрии. Куб, призма, цилиндр и конусСкачать

Миникурс по геометрии. Куб, призма, цилиндр и конус

Формы геометрических тел

Деталь любой формы можно представить как совокупность отдельных геометрических тел.

Для примера возьмем деталь (рис. 159. а) и проанализируем се форму. Мысленно разделив ее на отдельные элементы, получим следующие гео­метрические тела (рис. 159, б): 1 — усеченный прямой круговой конус с цилиндрическим отвер­стием, 2 — прямой круговой цилиндр, 3 — прямо­угольный параллелепипед, 4 — два прямоугольных параллелепипеда с цилиндрическими отверстия­ми, 5 — два полых полуцилиндра. Для выполне­ния комплексных чертежей необходимо усвоить методы проецирования отдельных геометрических тел, а также точек и линий, расположенных на поверхности этих тел.

Читайте также: Задачи по математик про цилиндр

Геометрические фигуры конус призма цилиндр пирамида

Геометрические тела, ограниченные плоскими многоугольниками, называются многогранниками (рис. 160, а). Эти многоугольники называются гранями, их пересечения — ребрами. Угол, образо­ванный гранями, сходящимися в одной точке — вершине, называется многогранным углом.

Тела вращения ограничены поверхностями, которые получаются в результате вращения ка­кой-либо линии вокруг неподвижной оси (рис. 160, б и в). Линия АВ, которая при своем движении образует поверхность, называется обра­зующей. Наиболее часто встречаются такие тела вращения, как цилиндр, конус, шар, тор.

Геометрические фигуры конус призма цилиндр пирамида

Видео:Объёмные геометрические фигуры. Куб. Цилиндр. Конус. Шар // Математика 1 классСкачать

Объёмные геометрические фигуры.  Куб.  Цилиндр.  Конус.  Шар  // Математика 1 класс

Проекции призм

Построение проекций правильной прямой шес­тиугольной призмы (рис. 161) начинается с выпо­лнения ее горизонтальной проекции — правильно­го шестиугольника. Из вершин этого шестиуголь­ника провопят вертикальные линии связи и строят фронтальную проекцию нижнего основания при­змы. Эта проекция изображается отрезком гори­зонтальной прямой. От этой прямой вверх откла­дывают высоту призмы и строят фронтальную проекцию верхнего основания. Затем вычерчива­ют фронтальные проекции ребер — отрезки верти­кальных прямых, равные высоте призмы. Фрон­тальные проекции передних и задних ребер совпа­дают. Горизонтальные проекции боковых граней изображаются в виде отрезков прямых. Передняя боковая грань 1243 изображается на плоскости V без искажения, а на плоскости W— в виде прямой линии. Фронтальные и профильные проекции остальных боковых граней изображаются с иска­жением.

На чертеже оси х, у и z не показывают, что делает чертеж более простым.

Геометрические фигуры конус призма цилиндр пирамида

Несколько сложнее построение проекций на­клонной призмы.

Рассмотрим порядок построения проекций на­клонной шестиугольной призмы.

1. Призма, основание которой лежит на плос­кости Н, наклонена к этой плоскости под утлом α (рис. 162, а). Ребра призмы параллельны плоскос­ти V, т.е. являются фронталями.

Вначале выполняется построение горизонталь­ной проекции основания призмы, которое проеци­руется на плоскость Н без искажения (правиль­ный шестиугольник). Фронтальная проекция осно­вания представляет собой отрезок прямой, парал­лельной оси х.

Из точек 1‘, 2′, 3’ фронтальной проекции основания проводят прямые проекции ребер под углом α к оси х и на них откладывают действи­тельную длину бокового ребра призмы.

Строят фронтальную проекцию верхнего осно­вания призмы в виде отрезка прямой, равного и параллельного фронтальной проекции нижнего основания.

Из точек 1, 2, 3, 4. 5. 6 горизонтальной проек­ции нижнего основания проводят прямые — про­екции ребер — параллельно оси х и на них с по­мощью вертикальных линий связи находят шесть точек — горизонтальные проекции вершин верхне­го основания призмы.

2. Прямая правильная шестиугольная призма наклонена под углом α к плоскости Н. Основание призмы наклонено к плоскости Н под углом β (рис. 162, б).

В этом случае необходимо вначале построить фронтальную проекцию основания. Эта проекция представляет собой отрезок, равный расстоянию между параллельными сторонами шестиугольника. Если этот отрезок разделить пополам и из его середины провести линию связи, то на ней будут расположены точки 2 и 5 — горизонтальные про­екции вершин основания призмы. Расстояние между точками 2, 5 равно действительному рас­стоянию между вершинами основания призмы. Так как горизонтальные проекции сторон 16 и 34 представляют собой их действительные длины, то, воспользовавшись этим обстоятельством, мож­но построить полностью горизонтальную проек­цию основания.

Дальнейший процесс построения, показанный на рис. 162, б, аналогичен приведенному на рис. 162, а.

Геометрические фигуры конус призма цилиндр пирамида

На комплексных чертежах предметов часто приходится строить проекции линий и точек, расположенных на поверхности этих тел, имея только одну проекцию линии или точки. Рассмотрим решение такой задачи.

Дан комплексный чертеж четырехугольной пря­мой призмы и фронтальная проекция а’ точки А.

Прежде всего надо отыскать на комплексном чертеже две проекции грани, на которой располо­жена точка А. На комплексном чертеже видно (рис. 163, а), что точка А лежит на грани призмы 1265. Фронтальная проекция а’ точки А лежит на фронтальной проекции 1‘2’6’5‘ грани призмы. Горизонтальная проекция 1562 этой грани — отре­зок 56. На этом отрезке и находится горизонталь­ная проекция а точки А. Профильную проекцию призмы и точки А строят, применяя линии связи.

По имеющемуся комплексному чертежу призмы можно выполнить ее изометрическую проекцию по координатам вершин. Для этого вначале строят нижнее основание призмы (рис. 163, б), а затем вертикальные ребра и верхнее основание (рис. 163, в).

По координатам т и п точки А, взятым с ком­плексного чертежа, можно построить аксономет­рическую проекцию этой точки.

Геометрические фигуры конус призма цилиндр пирамида

Видео:Призма и пирамида. Площадь и объем. Вебинар | Математика 10 классСкачать

Призма и пирамида. Площадь и объем.  Вебинар | Математика 10 класс

Проекции пирамид

Построение проекций треугольной пирамиды начинается с построения основания, горизонталь­ная проекция которого представляет собой тре­угольник без искажения (рис. 164, а). фронталь­ная проекция основания — отрезок горизонталь­ной прямой.

Из горизонтальной проекции точки s (верши­ны. пирамиды) проводят вертикальную линию связи, на которой от оси х откладывают высоту пирамиды и получают фронтальную проекцию s’ вершины. Соединяя точку s’ с точками 1‘, 2′ и 3′, получают фронтальные проекции ребер пира­миды.

Горизонтальные проекции ребер получают, соединяя горизонтальную проекцию точки s с горизонтальными проекциями точек 1, 2 и 3.

Пусть, например, дана фронтальная проекция а’ точки А, расположенной на грани пирамиды 1s2, и требуется найти другую проекцию этой точки. Для решения этой задачи проведем через а’ произвольную вспомогательную прямую и продолжим ее до пересечения с фронтальными проекциями 1’s’ и 2’s’ ребер в точках п’ и т‘. Затем проведем из точек п’ и т‘ линии связи до пересечения с горизонтальными проекциями 1s и 2s этих ребер в точках п и т. Соединив п с т, получим горизонтальную проекцию вспомогательной прямой, на которой с помощью линии связи найдем искомую горизонтальную проекцию а точки А Профильную проекцию этой точки нахо­дят по линиям связи.

Читайте также: Как повысить компрессию в одном цилиндре двигателя

Другой способ решения задачи на построение проекции точки по заданной ее проекции показан на рис. 164, б. Дана четырехугольная правильная пирамида. Через заданную фронтальную проек­цию а’ точки А проводят вспомогательную пря­мую, проходящую через вершину пирамиды и расположенную на ее грани. Горизонтальную проекцию ns вспомогательной прямой находят с помощью линии связи. Искомая горизонтальная проекция а точки А находится на пересечении линии связи, проведенной из точки а’, с горизон­тальной проекцией ns вспомогательной прямой.

Фронтальная диметрическая проекция рассмат­риваемой пирамиды выполняется следующим образом (рис. 164, в).

Вначале строят основание, для чего по оси х откладывают длину диагонали 13, а по оси у — половину длины диагонали 24. Из точки О пере­сечения диагоналей проводят ось z и на ней от­кладывают высоту пирамиды. Вершину S соединя­ют с вершинами основания прямыми линиями — ребрами.

Фронтальную диметрическую проекцию точки А, расположенной на грани пирамиды, строят по координатам, которые берут с комплексного чер­тежа. От качала координат О по оси х отклады­вают координату xА, из се конца параллельно оси у — половину координаты yА и из конца этой ко­ординаты параллельно оси z — третью координату zА. Построение точки В, расположенной на ребре пирамиды, более простое. От точки О по оси х от­кладывают координату xB и из конца ее проводят прямую, параллельную оси z, до пересечения с ребром пирамиды в точке В.

Геометрические фигуры конус призма цилиндр пирамида

Видео:Объемные Геометрические ФИГУРЫ Загадки для ДЕТЕЙСкачать

Объемные Геометрические ФИГУРЫ Загадки для ДЕТЕЙ

Проекции цилиндров

Боковая поверхность прямого кругового цилин­дра получается вращением отрезка АВ образую­щей вокруг оси, параллельной этому отрезку. На рис. 165, а представлена изометрическая проекция цилиндра.

Построение горизонтальной и фронтальной проекций цилиндра показано на рис. 165, б и в.

Построение начинают с изображения основания цилиндра, т.е. двух проекций окружности (рис. 165, б). Так как окружность расположена на плоскости Н, то она проецируется на эту плос­кость без искажения. Фронтальная проекция ок­ружности представляет собой отрезок горизон­тальной прямой линии, равный диаметру окруж­ности основания.

После построения основания на фронтальной проекции проводят две очерковые (крайние) обра­зующие и на них откладывают высоту цилиндра. Проводят отрезок горизонтальной прямой, кото­рый является фронтальной проекцией верхнего основания цилиндра (рис. 165, в).

Геометрические фигуры конус призма цилиндр пирамида

Определение недостающих проекции точек А и В, расположенных на поверхности цилиндра, по заданным фронтальным проекциям в данном слу­чае затруднений нс вызывает, так как вся горизонтальная проекция боковой поверхности цилиндра представляет собой окружность (рис. 166. а). Следовательно, горизонтальные проекции точек А и В можно найти, проводя из данных точек а’ и b вертикальные линии связи до их пересечения с окружностью в искомых точ­ках а и Ь.

Профильные проекции точек А и В строят так­же с помощью вертикальных и горизонтальных линий связи.

Изометрическую проекцию цилиндра вычерчи­вают, как показано на рис. 166, б.

В изометрии точки A и В строят по координа­там. Например, для построения точки В от начала координат О по оси х откладывают координату xB = n, а затем через ее конец проводят прямую, параллельную оси у, до пересечения с контуром основания в точке 1. Из этой точки параллельно оси x проводят прямую, на которой откладывают координату xB = h1 точки В.

Геометрические фигуры конус призма цилиндр пирамида

Видео:Пирамида. 11 класс.Скачать

Пирамида. 11 класс.

Проекции конусов

Нагляднее изображение прямого кругового ко­нуса показано на рис. 167, а. Боковая поверхность конуса получена вращением отрезка BS вокруг оси, пересекающей отрезок в точке S. Последова­тельность построения двух проекций конуса пока­зана на рис. 167, б и в. Сначала строят две проекции основания. Горизонтальная проекция основа­ния — окружность. Фронтальной проекцией будет отрезок горизонтальной прямой, равный диаметру этой окружности (рис. 167, б). На фронтальной проекции из середины основания восставляют перпендикуляр и на нем откладывают высоту конуса (рис. 167, в). Полученную фронтальную проекцию вершины конуса соединяют прямыми с концами фронтальной проекции основания и по­лучают фронтальную проекцию конуса.

Геометрические фигуры конус призма цилиндр пирамида

Если на поверхности конуса задана одна проек­ция точки А (например, фронтальная проекция на рис. 168, а). то две другие проекции этой точки определяют с помощью вспомогательных линий — образующей, расположенной на поверхности ко­нуса и проведенной через точку А, или окружнос­ти, расположенной в плоскости, параллельной основанию конуса.

В первом случае (рис 168. а) проводят фрон­тальную проекцию saf вспомогательной обра­зующей. Пользуясь вертикальной линией связи, проведенной из точки f, расположенной на фрон­тальной проекции окружности основания, находят горизонтальную проекцию sf этой образующей, на которой с помощью линии связи, проходящей через а’, находят искомую точку а.

Во втором случае (рис. 168. б) вспомогательной линией, проходящей через точку А, будет окруж­ность. расположенная на конической поверхности и параллельная плоскости Н. Фронтальная проек­ция этой окружности изображается в виде отрезка Ь’с’ горизонтальной прямой, величина которого равна диаметру вспомогательной окружности. Искомая горизонтальная проекция а точки А на­ходится на пересечении линии связи, опущенной из точки а’, с горизонтальной проекцией вспомо­гательной окружности.

Читайте также: Ремкомплект тормозных цилиндров ваз 2131

Если заданная фронтальная проекция Ь’ точки В расположена на контурной (очерко­вой) образующей SK, то горизонтальная проекция точки находится без вспомогательных линий (рис. 168. б).

В изометрической проекции точку А, находя­щуюся на поверхности конуса, строят по трем координатам (рис. 168, в): xА = n, yА = m, zА = h. Эти координаты последовательно откладывают по направлениям, параллельным изометрическим осям. В рассматриваемом примере от точки О по оси х отложена координата xА = n; из конца ее параллельно оси у проведена прямая, на которой отложена координата yА = m; из конца отрезка, равного т, параллельно оси z проведена прямая, на которой отложена координата zА = h. В резуль­тате построений получим искомую точку А.

Геометрические фигуры конус призма цилиндр пирамида

Видео:Объемные геометрические фигуры. Все выпуски. Наше всё!Скачать

Объемные геометрические фигуры. Все выпуски. Наше всё!

Проекции шара

На рис. 169, а изображена половина шара, сферическая поверхность этого шара образована вращением четверти окружности АВ вокруг ради­уса АО.

Проекции этой фигуры приведены на рис. 169, б. Горизонтальная проекция — окруж­ность радиуса, равного радиусу сферы, а фрон­тальная — полуокружность того же радиуса.

Если точка А расположена на сферической поверхности (рис. 169, в), то вспомогательная линия Ь’с’, проведенная через эту точку параллельно горизонтальной плоскости проекций, прое­цируется на горизонтальную плоскость проекций окружностью. На горизонтальной проекции вспо­могательной окружности находят с помощью ли­нии связи искомую горизонтальную проекцию а точки А.

Величина диаметра вспомогательной окружнос­ти равна фронтальной проекции Ь’с’.

Геометрические фигуры конус призма цилиндр пирамида

Видео:Цилиндр, конус, шар, 6 классСкачать

Цилиндр, конус, шар, 6 класс

Проекции кольца и тора

Поверхность кругового кольца (рис. 170, а) образована вращением образующей окружности ABCD вокруг оси ОО1.

Тор — поверхность, образованная вращением части дуги окружности, являющейся образующей, вокруг оси ОО1, расположенной в плоскости этой окружности и не проходящей через ее центр.

Геометрические фигуры конус призма цилиндр пирамида

На рис. 171, а и б приведены два вида тора. В первом случае образующая дуга окружности радиуса R отстоит от оси вращения на расстоянии меньше радиуса R, а во втором случае — больше.

В обоих случаях фронтальные проекции тора представляют собой действительный вид двух образующих дуг окружности радиуса R, располо­женных симметрично относительно фронтальной проекции оси вращения. Профильными проекция­ми тора будут окружности.

Круговое кольцо (или открытый тор) имеет горизонтальную проекцию в виде двух концентри­ческих окружностей, разность радиусов которых равна толщине кольца или диаметру образующей окружности (рис. 170, б). Фронтальная проекция ограничивается справа и слева дугами полуокруж­ностей диаметра образующей окружности.

Геометрические фигуры конус призма цилиндр пирамида

В случае, когда точка А лежит на поверхности кругового кольца и дана одна се проекция, для нахождения второй проекции этой точки приме­няется вспомогательная окружность, проходящая через данную точку А и расположенная на повер­хности кольца в плоскости, перпендикулярной оси кольца (рис. 172).

Если задана фронтальная проекция а’ точки А, лежащей на поверхности кольца, то для нахожде­ния ее второй проекции (в данном случае — про­фильной) через а’ проводят фронтальную проек­цию вспомогательной окружности — отрезок вер­тикальной прямой линии bc‘. Затем строят про­фильную проекцию b«с» этой окружности и на ней, применяя линию связи, находят точку а“.

Если задана профильная проекция а» точки D, расположенной на поверхности этого кольца, то для нахождения фронтальной проекции точки D через d« проводят профильную проекцию вспомо­гательной окружности радиуса O«d“. Затем через верхнюю и нижнюю точки е» f« этой окружности проводят горизонтальные линии связи до пересечения с фронтальными проекциями образующей окружности радиуса r и получают точки e и f‘. Эти точки соединяют вертикальной прямой, кото­рая представляет собой фронтальную проекцию вспомогательной окружности (она будет невиди­ма). Проводя горизонтальную линию связи из точки d« до пересечения с прямой ef ‘, получаем искомую точку d‘.

Такие же приемы построения применимы и для точек, находящихся на поверхности тора.

Геометрические фигуры конус призма цилиндр пирамида

Видео:КАК СДЕЛАТЬ КОНУС ИЗ БУМАГИ? КАК СДЕЛАТЬ ГЕОМЕТРИЧЕСКИЕ ТЕЛА ВРАЩЕНИЯ? ГЕОМЕТРИЯ. | #RAIDOTVСкачать

КАК СДЕЛАТЬ КОНУС ИЗ БУМАГИ? КАК СДЕЛАТЬ ГЕОМЕТРИЧЕСКИЕ ТЕЛА ВРАЩЕНИЯ? ГЕОМЕТРИЯ. | #RAIDOTV

Комплексные чертежи группы геометрических тел и моделей

Для развития пространственного воображения полезно выполнять комплексные чертежи группы геометрических тел и несложных моделей с натуры.

Наглядное изображение группы геометрических тел показано на рис. 173, а. Построение комплек­сного чертежа этой группы геометрических тел следует начинать с горизонтальной проекции, так как основания цилиндра, конуса и шестигранной пирамиды проецируются на горизонтальную плос­кость проекции без искажений. С помощью вертикальных линий связи строят фронтальную проек­цию. Профильную проекцию строят с помощью вертикальных и горизонтальных линий связи (рис. 173, б).

Геометрические фигуры конус призма цилиндр пирамида

Чтобы перейти к более сложным моделям, не­обходимо усвоить построение простых комплек­сных чертежей. Проекции моделей следует распо­лагать таким образом, чтобы фронтальная проек­ция давала наиболее полное представление о фор­ме и размерах модели (рис. 174).

Геометрические фигуры конус призма цилиндр пирамида

Примеры и образцы решения задач:

Услуги по выполнению чертежей:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

🌟 Видео

Геометрические тела.Скачать

Геометрические тела.

ЦИЛИНДР. КОНУС. ШАР. ЕГЭ. ЗАДАНИЕ 5.СТЕРЕОМЕТРИЯСкачать

ЦИЛИНДР. КОНУС. ШАР. ЕГЭ. ЗАДАНИЕ 5.СТЕРЕОМЕТРИЯ

КАК СДЕЛАТЬ ШЕСТИУГОЛЬНУЮ ПИРАМИДУ ИЗ БУМАГИ? ШЕСТИУГОЛЬНАЯ ПИРАМИДА. ОБЪЕМНЫЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫСкачать

КАК СДЕЛАТЬ ШЕСТИУГОЛЬНУЮ ПИРАМИДУ ИЗ БУМАГИ? ШЕСТИУГОЛЬНАЯ ПИРАМИДА. ОБЪЕМНЫЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ

Математика. Пространственные фигуры. Пирамида, конус.Скачать

Математика. Пространственные фигуры. Пирамида, конус.

Как сделать ЧЕТЫРЕХУГОЛЬНУЮ ПИРАМИДУ из бумаги? ||| Геометрические фигуры своими рукамиСкачать

Как сделать ЧЕТЫРЕХУГОЛЬНУЮ ПИРАМИДУ из бумаги? ||| Геометрические фигуры своими руками

КАК СДЕЛАТЬ ЦИЛИНДР ИЗ БУМАГИ? КАК СДЕЛАТЬ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ? ГЕОМЕТРИЧЕСКИЕ ТЕЛА. | #RAIDOTVСкачать

КАК СДЕЛАТЬ ЦИЛИНДР ИЗ БУМАГИ? КАК СДЕЛАТЬ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ? ГЕОМЕТРИЧЕСКИЕ ТЕЛА. | #RAIDOTV

Как сделать объемную ТРЕУГОЛЬНУЮ ПРИЗМУ из бумаги А4? // Геометрические фигуры своими рукамиСкачать

Как сделать объемную ТРЕУГОЛЬНУЮ ПРИЗМУ из бумаги А4? //  Геометрические фигуры своими руками

Урок 3 конус, бублик, сфера, пирамида и другие геометрические фигуры в SketchUp.Скачать

Урок 3 конус, бублик, сфера, пирамида и другие геометрические фигуры в SketchUp.

Геометрические тела: пирамида, конусСкачать

Геометрические тела: пирамида, конус
Поделиться или сохранить к себе:
Технарь знаток