Геометрия конусы сферы цилиндры

Авто помощник

Видео:ЦИЛИНДР. КОНУС. ШАР. ЕГЭ. ЗАДАНИЕ 5.СТЕРЕОМЕТРИЯСкачать

ЦИЛИНДР. КОНУС. ШАР. ЕГЭ. ЗАДАНИЕ 5.СТЕРЕОМЕТРИЯ

Формулы объема и площади поверхности. Цилиндр, конус и шар

Геометрия конусы сферы цилиндры

Тела вращения, изучаемые в школе, — это цилиндр, конус и шар.

Если в задаче на ЕГЭ по математике вам надо посчитать объем конуса или площадь сферы — считайте, что повезло.

Применяйте формулы объема и площади поверхности цилиндра, конуса и шара. Все они есть в нашей таблице. Учите наизусть. Отсюда начинается знание стереометрии.

Геометрия конусы сферы цилиндры

Ты нашел то, что искал? Поделись с друзьями!

Смотрите также: Формулы объема и площади поверхности многогранников.
Кроме формул, в решении задач по стереометрии нужны также элементарная логика и пространственное воображение. Есть и свои небольшие секреты.

Например, такой важный факт:

Если все линейные размеры объемного тела увеличить в 2 раза, то площадь его поверхности увеличится в 4 раза, а объем — в 8 раз.

Вот такая задача. Как и остальные на нашем сайте, она взята из банка заданий ФИПИ.

Геометрия конусы сферы цилиндры

1. Объем конуса равен . Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса.

Очевидно, что объем меньшего конуса в раз меньше объема большого и равен двум.

Для решения некоторых задач полезны начальные знания стереометрии. Например — что такое правильная пирамида или прямая призма. Полезно помнить, что у цилиндра, конуса и шара есть еще общее название — тела вращения. Что сферой называется поверхность шара. А, например, фраза «образующая конуса наклонена к плоскости основания под углом 30 градусов предполагает, что вы знаете, что такое угол между прямой и плоскостью. Вам также может пригодиться теорема Пифагора и простые формулы площадей фигур.

Иногда неплохо нарисовать вид сверху. Или, как в этой задаче, — снизу.

Геометрия конусы сферы цилиндры

2. Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?

Всё просто — рисуем вид снизу. Видим, что радиус большего круга в раз больше, чем радиус меньшего. Высоты у обоих конусов одинаковы. Следовательно, объем большего конуса будет в раза больше.

Говорят, что хороший чертеж — это уже половина решения. Читайте о том, как строить чертежи в задачах по стереометрии.

Еще один важный момент. Помним, что в задачах части В вариантов ЕГЭ по математике ответ записывается в виде целого числа или конечной десятичной дроби. Поэтому никаких или у вас в ответе в части В быть не должно. Подставлять приближенное значение числа тоже не нужно! Оно обязательно должно сократиться!. Именно для этого в некоторых задачах задание формулируется, например, так: «Найдите площадь боковой поверхности цилиндра, деленную на ».

А где же еще применяются формулы объема и площади поверхности тел вращения? Конечно же, в задаче 14 Профильного ЕГЭ по математике.
Мы тоже расскажем о ней.

Видео:Конус. 11 класс.Скачать

Конус. 11 класс.

Цилиндр, конус, шар

Цилиндр, конус, шар

Цилиндр – тело, ограниченное цилиндрической поверхностью и двумя кругами с границами $М$ и $М_1$. Цилиндрическая поверхность называется боковой поверхностью цилиндра, а круги – основаниями цилиндра.

Читайте также: Блок цилиндров jmc 1032

Образующие цилиндрической поверхности называются образующими цилиндра, на рисунке образующая $L$.

Цилиндр называется прямым, если его образующие перпендикулярны основаниям. Осевое сечение цилиндра — это прямоугольник, у которого одна сторона равна диаметру основания, а вторая – высоте цилиндра.

Основные понятия и свойства цилиндра:

  1. Основания цилиндра равны и лежат в параллельных плоскостях.
  2. Все образующие цилиндра параллельны и равны.
  3. Радиусом цилиндра называется радиус его основания ($R$).
  4. Высотой цилиндра называется расстояние между плоскостями оснований (в прямом цилиндре высота равна образующей).
  5. Осью цилиндра называется отрезок, соединяющий центры оснований ($ОО_1$).
  6. Если радиус или диаметр цилиндра увеличить в n раз, то объем цилиндра увеличится в $n^2$ раз.
  7. Если высоту цилиндра увеличить в m раз, то объем цилиндра увеличится в то же количество раз.
  8. Если призму вписать в цилиндр, то ее основаниями будут являться равные многоугольники, вписанные в основание цилиндра, а боковые ребра — образующими цилиндра.
  9. Если цилиндр вписан в призму, то ее основания — равные многоугольники, описанные около оснований цилиндра. Плоскости граней призмы касаются боковой поверхности цилиндра.
  10. Если в цилиндр вписана сфера, то радиус сферы равен радиусу цилиндра и равен половине высоты цилиндра.

Площадь поверхности и объем цилиндра.

Площадь боковой поверхности цилиндра равна произведению длины окружности основания на высоту.

Площадь поверхности цилиндра равна сумме двух площадей оснований и площади боковой поверхности.

Объем цилиндра равен произведению площади основания на высоту.

Объем части цилиндра, в основании которого лежит сектор: $V= / $, где $n°$ — это градусная мера центрального угла, отсекающего заданный сектор.

Цилиндр описан около шара. Объём цилиндра равен $30$. Найдите объём шара.

Если в цилиндр вписан шар, то радиус цилиндра равен радиусу шара, а высота цилиндра в два раза больше радиуса шара.

Распишем формулы объема цилиндра и шара.

Далее надо сравнить во сколько раз объем цилиндра больше объема шара, для этого разделим объемы друг на друга.

Объем цилиндра больше объема шара в $1.5$ раза, следовательно, чтобы найти объем шара, надо объем цилиндра разделить на $1.5$.

Конусом (круговым конусом) называется тело, которое состоит из круга, точки, не лежащей в плоскости этого круга, и всех отрезков, соединяющих заданную точку с точками круга.

Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими и обозначаются (l).

Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. Ось прямого конуса и его высота равны.

  1. Все образующие конуса равны.
  2. Осевым сечением конуса является равнобедренный треугольник, основание которого равно двум радиусам, а боковые стороны равны образующим конуса.
  3. Если боковая поверхность конуса – полукруг, то осевым сечением является равносторонний треугольник, угол при вершине равен $60°$.
  4. Если радиус или диаметр конуса увеличить в n раз, то его объем увеличится в $n^2$ раз.
  5. Если высоту конуса увеличить в m раз, то объем конуса увеличится в то же количество раз.

Площадь поверхности и объем конуса.

Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую.

Читайте также: Пневматические цилиндры фирмы тм metal work pneumatic

Площадь поверхности конуса равна сумме площади основания и площади боковой поверхности.

Объем конуса равен трети произведения площади основания на высоту.

Объем части конуса, в основании которого лежит сектор: $V= / $, где $n°$ — это градусная мера центрального угла, отсекающего заданный сектор.

Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии ($R$) от данной точки (центра сферы $О$).

Тело, ограниченное сферой, называется шаром.

Осевое сечение шара это круг, радиус которого равен радиусу шара. Осевым сечением является самый большой круг шара.

Площадь поверхности сферы: $S_ =4π·R^2=π·d^2$, где $R$ — радиус сферы, $d$ — диаметр сферы

Объем шара: $V= / = / $, где $R$ — радиус шара, $d$ — диаметр шара.

Если радиус или диаметр шара увеличить в n раз, то площадь поверхности увеличится в $n^2$ раз, а объем в $n^3$ раз.

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$:

Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.

  1. Синусом ($sin$) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом ($cos$) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом ($tg$) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету.

Значения тригонометрических функций некоторых углов:

$α$$30$$45$$60$
$sinα$$ / $$ / $$ / $
$cosα$$ / $$ / $$ / $
$tgα$$ / $$1$$√3$
$ctgα$$√3$$1$$ / $

Признаки подобия треугольников:

  1. Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.
  2. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между ними равны, то такие треугольники подобны.
  3. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Видео:Цилиндр, конус и шар в задании 2 | Математика ЕГЭ 2023 | УмскулСкачать

Цилиндр, конус и шар в задании 2 | Математика ЕГЭ 2023 | Умскул

Поверхности вращения: цилиндр, конус, сфера

Рассмотрим окружность \(C\) с центром \(O\) радиуса \(R\) на плоскости \(\alpha\) . Через каждую точку окружности \(C\) проведем прямую перпендикулярно плоскости \(\alpha\) . Поверхность, образованная этими прямыми, называется цилиндрической поверхностью.
Сами прямые называются образующими данной поверхности.

Проведем теперь через некоторую точку некоторой образующей плоскость \(\beta\parallel \alpha\) . Множество точек, по которым образующие пересекут плоскость \(\beta\) , образует окружность \(C’\) , равную окружности \(C\) .
Часть пространства, ограниченная двумя кругами \(K\) и \(K’\) с границами \(C\) и \(C’\) соответственно, а также частью цилиндрической поверхности, заключенной между плоскостями \(\alpha\) и \(\beta\) , называется цилиндром.

Круги \(K\) и \(K’\) называются основаниями цилиндра; отрезки образующих, заключенных между плоскостями, – образующими цилиндра; часть цилиндрической поверхности, образованная ими, — боковой поверхностью цилиндра. Отрезок, соединяющий центры оснований цилиндра равен образующей цилиндра и равен высоте цилиндра ( \(l=h\) ).

Геометрия конусы сферы цилиндры

Площадь боковой поверхности цилиндра равна \[S_ >=2\pi R\cdot h\]

где \(R\) – радиус основания цилиндра, \(h\) – высота (образующая).

Площадь полной поверхности цилиндра равна сумме площади боковой поверхности и площадей обоих оснований \[S_ >=2\pi R\cdot h+2\pi R^2=2\pi R(R+h)\]

Объем цилиндра вычисляется по формуле \[V_ >=\pi R^2\cdot h\]

Рассмотрим плоскость \(\alpha\) и на ней окружность \(C\) с центром \(O\) и радиусом \(R\) . Через точку \(O\) проведем прямую, перпендикулярную плоскости \(\alpha\) . Отметим на этой прямой некоторую точку \(P\) . Поверхность, образованная всеми прямыми, проходящими через точку \(P\) и каждую точку окружности \(C\) , называется конической поверхностью, а эти прямые – образующими конической поверхности. Часть пространства, ограниченная кругом с границей \(C\) и отрезками образующих, заключенными между точкой \(P\) и точкой на окружности, называется конусом. Отрезки \(PA\) , где \(A\in \text C\) , называются образующими конуса; точка \(P\) – вершина конуса; круг с границей \(C\) – основание конуса; отрезок \(PO\) – высота конуса.

Геометрия конусы сферы цилиндры

Заметим, что у конуса высота и образующая не равны друг другу, как было в случае с цилиндром.

Площадь боковой поверхности конуса равна \[S_ >=\pi R\cdot l\]

где \(R\) – радиус основания конуса, \(l\) – образующая.

Площадь полной поверхности конуса равна сумме площади боковой поверхности и площадей основания \[S_ >=\pi R\cdot l+\pi R^2=\pi R(R+l)\]

Объем конуса вычисляется по формуле \[V_ >=\dfrac13\pi R^2\cdot h\]

Заметим, что цилиндр в каком-то смысле является призмой, только в основании находится не многоугольник (как у призмы), а круг.
Формула объема цилиндра такая же, как и формула объема призмы: произведение площади основания на высоту.

Аналогично конус в каком-то смысле является пирамидой. Поэтому формула объема конуса такая же, как и у пирамиды: треть площади основания на высоту.

Рассмотрим множество точек пространства, равноудаленных от некоторой точки \(O\) на расстояние \(R\) . Это множество называется сферой с центром в точке \(O\) радиуса \(R\) .
Отрезок, соединяющий две точки сферы и проходящий через ее центр называется диаметром сферы.

Сфера вместе со своей внутренностью называется шаром.

Геометрия конусы сферы цилиндры

Площадь сферы вычисляется по формуле \[S_ >=4\pi R^2\]

Объем шара вычисляется по формуле \[V_ >=\dfrac43 \pi R^3\]

Определение

Шаровой сегмент – это часть шара, отсекаемая от него некоторой плоскостью.
Пусть плоскость пересекла шар по кругу \(K\) с центром в точке \(Q\) . Соединим точки \(O\) (центр шара) и \(Q\) и продлим этот отрезок до пересечения со сферой – получим радиус \(OP\) . Тогда отрезок \(QP\) называется высотой сегмента.

Геометрия конусы сферы цилиндры

Пусть \(R\) – радиус шара, \(h\) – высота сегмента, то объем шарового сегмента равен \[V_ >=\pi h^2 (R-\dfrac13h)\]

Определение

Шаровой слой – это часть шара, заключенная между двумя параллельными плоскостями, пересекающими этот шар. Круги, по которым плоскости пересекают шар, называются основаниями шарового слоя, отрезок, соединяющий центры оснований – высотой шарового слоя.
Две оставшиеся части шара являются в этом случае шаровыми сегментами.

Объем шарового слоя равен разности объема шара и объемов шаровых сегментов с высотами \(AP\) и \(BT\) .

💥 Видео

Миникурс по геометрии. Куб, призма, цилиндр и конусСкачать

Миникурс по геометрии. Куб, призма, цилиндр и конус

Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

ЦИЛИНДР // КОНУС // ШАРСкачать

ЦИЛИНДР // КОНУС // ШАР

Цилиндр, конус, шар, 6 классСкачать

Цилиндр, конус, шар, 6 класс

ЦИЛИНДР. КОНУС. ШАР.Скачать

ЦИЛИНДР. КОНУС. ШАР.

Пересечение конуса и сферыСкачать

Пересечение конуса и сферы

Комбинации тел многогранники, цилиндр, конус, шар. Урок 10. Геометрия 11 классСкачать

Комбинации тел многогранники, цилиндр, конус, шар. Урок 10. Геометрия 11 класс

Линия пересечения двух поверхностей вращения (Метод вспомогательных сфер)Скачать

Линия пересечения двух поверхностей вращения (Метод вспомогательных сфер)

Решение задач на конус и цилиндрСкачать

Решение задач на конус и цилиндр

ЦИЛИНДР КОНУС И ШАР 9 класс Атанасян геометрияСкачать

ЦИЛИНДР КОНУС И ШАР 9 класс Атанасян геометрия

Пересечение конуса и сферы. Пошаговое видео. Инженерная графикаСкачать

Пересечение конуса и сферы. Пошаговое видео. Инженерная графика

Линия пересечения поверхностей конуса и сферы (метод секущих плоскостей)Скачать

Линия пересечения поверхностей конуса и сферы (метод секущих плоскостей)

Теория к ЕГЭ 1 | Цилиндр, конус, сфера, шар | Круглые тела или тела вращенияСкачать

Теория к ЕГЭ 1 | Цилиндр, конус, сфера, шар | Круглые тела или тела вращения

11 класс, 19 урок, Сфера и шарСкачать

11 класс, 19 урок, Сфера и шар

Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)Скачать

Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)

[Начертательная геометрия] Пересечение конуса и сферыСкачать

[Начертательная геометрия] Пересечение конуса и сферы

Пересечение поверхностей полусферы и цилиндра. Пошаговое видео. Инженерная графикаСкачать

Пересечение поверхностей полусферы и цилиндра. Пошаговое видео. Инженерная графика
Поделиться или сохранить к себе:
Технарь знаток