Видео:Как работает двигатель внутреннего сгорания автомобиля?Скачать
Горючая смесь в цилиндре двигателя внутреннего сгорания поджигается при
Центр бензоэлектроинструмента «Викинг»
Лучшее оборудование и инструмент в Тверском регионе
Видео:Смесеобразование и сгорание в цилиндре двигателя, 1982Скачать
Горение рабочей смеси, термодинамика и механика двигателя.
ГОРЕНИЕ РАБОЧЕЙ СМЕСИ, ТЕРМОДИНАМИКА И МЕХАНИКА ДВИГАТЕЛЯ
Индикаторная диаграмма 2-тактного двигателя
При рассмотрении рабочих циклов двигателей внутреннего сгорания целесообразно воспользоваться графическим изображением процессов, используя для этого систему координат «давление — объем», P—V. В системе координат P—V представляется зависимость давления газа в цилиндре от объема надпоршневого пространства. Диаграмма P—V получается в процессе измерения давления в надпоршневом пространстве с помощью специального прибора. Этот прибор называется индикатором, и поэтому диаграмма P—V называется индикаторной. На рисунке выше представлена индикаторная диаграмма 2-тактного двигателя.
Устройство современного 2-тактного двигателя
В 2-тактном двигателе горючая смесь до поступления в цилиндр заполняет картер, расположенный под поршнем. В стенке цилиндра имеются два окна: впускное (канал впуска) и выпускное (канал выпуска), а также окна продувочных каналов. Картер непосредственно с атмосферой не сообщается, впускное окно соединено с карбюратором. Продувочные окна сообщаются с картером камерой через каналы продувки.
Рабочий процесс 2-тактного карбюраторного двигателя
Рассмотрим подробнее рабочий цикл двигателя.
Всасывание, сжатие и зажигание
При движении вверх поршень (2) сжимает топливовоздушную смесь в камере сгорания (1). В картере создается разряжение (5). Так как впускной канал (4) открыт, свежая порция рабочей смеси попадает в картер (5). В это же время поршень (2) перекрывает выпускной канал (3) и перепускные каналы (7). Смесь сжимается и воспламеняется с помощью свечи зажигания (8) немного раньше ВМТ. Давление, возникающее при сгорании топлива, толкает поршень (2) вниз.
Работа, предварительное сжатие и выпуск
Поршень (2) работает, когда он движется вниз и вращает коленчатый вал (6), одновременно предварительно сжимая смесь в картере (5). Выпускной канал (3) и перепускные каналы (7) открыты. Выхлопные газы покидают камеру сгорания (1) через выпускной канал (3). Свежая, предварительно сжатая смесь движется через перепускные каналы (7) в камеру сгорания (1) и одновременно выталкивает наружу оставшиеся выхлопные газы.
У 2-тактного двигателя впуск, сжатие, работа и выпуск накладываются друг на друга во времени, и за два хода поршня совершается весь рабочий цикл — другими словами, при каждом обороте коленвала.
Это позволяет осуществить процесс газообмена за более короткое время и реализовать цикл за два хода поршня, или за один оборот коленчатого вала.
Для 4-тактных двигателей рабочий цикл осуществляется при последовательном прохождении всех четырех процессов: впуск, сжатие, сгорание и расширение продуктов сгорания (рабочий ход), выпуск. При этом поршень совершает четыре хода, а коленчатый вал двигателя два оборота. Такты впуска и выпуска являются вспомогательными. Поэтому на процесс газообмена в 4-тактном двигателе отводится более половины времени цикла.
Помимо мощности важной характеристикой двигателя является крутящий момент, говорящий о его «силовых возможностях». Лучше понять его можно на следующей сравнительной иллюстрации 2-тактного и 4-тактного двигателей.
Крутящий момент создается при расширении сгоревших газов, толкающих поршень вниз при такте работы, вращая коленвал. Величина крутящего момента зависит от конструкции двигателя. Напомним, что у 2-тактных двигателей такт работы приходится на каждый оборот двигателя, у 4-тактных — на каждый второй.
При этом 2-тактный двигатель теряет силу толкания поршня, как только открывается выпускное отверстие, позволяя выхлопным газам попадать в глушитель. Другими словами, вращающееся действие коленвала исчезает после того, как он сделал примерно 120°. В 4-тактном двигателе процесс сгорания продолжает действовать на поршень и вращать коленвал в течение 180° оборота.
Общее сравнение 2-тактного и 4-тактного двигателей по создаваемому крутящему моменту
Так в ходе такта работы 4-тактный двигатель создает больший крутящий момент по сравнению с 2-тактным.
Пример круговой диаграммы фаз распределения 2-тактного двигателя
Для анализа фаз газораспределения часто пользуются круговой диаграммой, на которой показываются моменты начала открытия и конца закрытия впускных и выпускных окон (клапанов для 4-тактных ДВС), выраженные в углах поворота коленчатого вала относительно мертвых точек. Фазы подбирают опытным путем при конструировании двигателя в зависимости от его быстроходности и конструкции его впускной и выпускной систем. Пример круговой диаграммы фаз газораспределения 2-тактного двигателя представлен на рисунке выше.
Читайте также: Лабораторная работа комплектование поршней с гильзами цилиндров двигателя
При одинаковых размерах цилиндра и частоте вращения, в 2-тактных ДВС сгорает вдвое больше топлива и теоретически может быть получена вдвое большая мощность, чем у 4-тактных, но 4-тактные двигатели более экономичны. Практически мощность 2-тактного двигателя больше в 1,7 —1,8 раза, что объясняется потерей части хода поршня при такте расширения, когда давление газа в цилиндре резко падает.
Мощность двигателя зависит от степени использования тепла, которое выделяется при горении топлива в цилиндре. В полезную работу превращается только 30-40 % выделившегося тепла, остальное тепло уходит с отработанными газами, отводится от нагретых деталей двигателя и рассеивается в воздухе.
Различают индикаторную и эффективную мощности двигателя. Индикаторной называют мощность, которая развивается газами внутри цилиндра двигателя.
Индикаторную мощность можно определить по формуле:
где Pi — индикаторное давление, МПа; Vh — рабочий объем цилиндра; i — число цилиндров двигателя; n — частота вращения коленчатого вала, с _1 ; τ — тактность двигателя.
Тактность двигателя — это число, показывающее, за сколько оборотов коленчатого вала совершается рабочий цикл. Для 2-тактного двигателя τ =1.
При работе двигателя часть индикаторной мощности затрачивается на преодоление сопротивления трения движущихся деталей двигателя, привод вспомогательных механизмов и агрегатов и на осуществление процессов газообмена в двигателе. Мощность, равноценная этим потерям, называется мощностью механических потерь N m .
Мощность двигателя, снимаемая с его коленчатого вала, называется эффективной мощностью Ne. Ее можно определить по формуле:
Для оценки механических потерь пользуются механическим КПД (ƞм) двигателя. Механическим коэффициентом полезного действия ƞм называется отношение эффективной мощности к индикаторной:
При увеличении индикаторной мощности Ni и постоянном значении мощности механических потерь N m , механический КПД ƞм также будет увеличиваться.
Одним из показателей экономичности работы двигателя служит эффективный КПД (ƞе). Он представляет собой отношение количества теплоты, превращенной в полезную работу, к затраченной теплоте:
где Le — теплота, эквивалентная эффективной работе, полученной при сгорании топлива; Gt — часовой расход топлива, кг/ч; hu — низшая удельная теплота сгорания топлива, МДж/кг.
Здесь ƞi — индикаторный КПД двигателя, который оценивает величину потерь работы цикла, вызванных теплообменом между стенками цилиндра и рабочим телом, перетечками, несовершенством процесса сгорания топлива и пр.:
где Li — работа цикла реального двигателя, равная площади действительной индикаторной диаграммы (индикаторная работа), Lц — работа цикла идеального двигателя.
Таким образом, эффективным КПД (ƞе) учитываются как тепловые, так и механические потери в двигателе.
Повышение эффективного КПД достигается совершенствованием рабочего цикла.
Повышение механического КПД, то есть снижение механических потерь, обеспечивается совершенствованием конструкции двигателя.
Мощность двигателя зависит от его рабочего объема, давления газов в цилиндре, частоты вращения коленчатого вала и тактности.
Эффективность использования рабочего объема, тепловую и динамическую напряженность двигателя оценивают по литровой мощности Nл, представляющей отношение номинальной эффективной мощности к рабочему объему двигателя (Vл). Для 2-тактного двигателя:
В зависимости от совершенства конструкции и технического состояния двигатель для выполнения одной и той же полезной работы расходует разное количество топлива. Зная расход топлива, можно определить индикаторный и эффективный удельные расходы топлива. Удельный индикаторный расход топлива g характеризует экономичность действительного цикла, удельный эффективный расход топлива ge характеризует экономичность двигателя.
Удельный индикаторный расход топлива — это масса топлива, расходуемая на единицу индикаторной мощности за 1 час:
Удельный эффективный расход топлива — это масса топлива, расходуемая на единицу эффективной мощности за 1 час:
Процесс (горения)рабочей смеси
Горение в цилиндре двигателя возможно только при определенном соотношении топлива и воздуха. От состава топливно-воздушной смеси зависит скорость горения и количество выделенной теплоты, следовательно, и мощность двигателя. Смесь топлива с воздухом, поступающая в цилиндр двигателя, называется также свежим зарядом. В состав свежего заряда, для карбюраторного 2-тактного двигателя, дополнительно вводится моторное или специальное масло для смазки самого двигателя. Для определения состава свежего заряда необходимо знать массовые доли основных элементов топлива.
Читайте также: Гиалиновые цилиндры в моче белка нет
В состав типичных жидких топлив входят углерод С, водород Н, кислород От, содержащийся в топливе. Для 1 кг топлива можно записать его состав в символьном виде как 1 = С + Н + От.
Бензин, используемый в карбюраторных двигателях, представляет собой смесь углеводородов. В составе чистого бензина углерода С — 84,9 %; водорода — 14,4 %; кислорода — 0,7 %.
В зависимости от количества кислорода, поступающего в цилиндр двигателя с атмосферным воздухом, сгорание может быть полным или неполным. При полном сгорании выделяется максимальное количество теплоты.
Реакции окисления углерода и водорода позволяют определить количество кислорода, необходимого для полного сгорания 1 кг топлива.
Углерод в соединении с кислородом образует углекислый газ и выделяет тепло. Процесс протекает по реакции:
Водород в соединении с кислородом образует воду и также выделяет тепло. Процесс происходит по реакции:
Для полного сгорания 1 кг углерода необходимо 2,67 кг кислорода, а для полного сгорания 1 кг водорода требуется 8 кг кислорода.
Кислород для горения берется из воздуха, который состоит, как известно, из 23 % кислорода и 77% азота.
Для полного сгорания 1 кг топлива теоретически необходимое количество воздуха для карбюраторных двигателей определяется по формуле и составляет:
L0 = 1/0,23 × (2,67С + 8Н — От),
L0 = 1/0,23 × (2,67 × 0,849 + 8 × 0,144 — 0,07) = 14,8 кг.
Горючая смесь характеризуется коэффициентом избытка воздуха α, представляющим собой отношение поступившего количества воздуха Lg в цилиндр двигателя к теоретически необходимому количеству воздуха L0 для полного сгорания топлива:
Можно принять, что для сгорания 1 кг топлива необходимо L0 = 15 кг воздуха. При плотности воздуха ρв = 1,293 кг/м 3 можно определить, что для сгорания 1 кг топлива потребуется примерно 11,26 м 3 воздуха.
Различают несколько видов горючей смеси исходя из действительно поступающего воздуха. Карбюраторные двигатели работают на горючих смесях с коэффициентом избытка воздуха а в диапазоне от 0,6 до 1,15.
При α При 0,6 При α = 1,0 — нормальная горючая смесь.
При 1,0 При α > 1,15 — бедная горючая смесь.
При коэффициенте избытка воздуха α = 1 все топливо в условиях цилиндра обычно не может сгореть до конечных продуктов полного окисления ввиду невозможности получения однородной по составу смеси во всем объеме камеры сгорания. Практически полное сгорание топлива возможно только при α > 1.
Коэффициент избытка воздуха является одним из параметров, характеризующих качество топливовоздушной смеси, от которой в свою очередь зависит состав продуктов сгорания и количество выделяющейся при сгорании теплоты.
Развитие реакций окисления (сгорания) в цилиндре двигателя происходит в результате перемешивания топлива с воздухом.
Количество выделяющейся при сгорании теплоты также зависит от степени сжатия рабочей смеси в цилиндре двигателя и применяемого топлива.
Процесс сжатия происходит при закрытых впускных и выпускных окнах (клапанах) и служит для увеличения температурного перепада цикла и степени расширения продуктов сгорания топлива. Это создает благоприятные условия для воспламенения и сгорания рабочей смеси и обеспечивает эффективное преобразование теплоты в механическую работу, то есть достижение максимальной мощности двигателя.
Благоприятные условия для воспламенения и сгорания рабочей смеси зависят от частоты вращения коленчатого вала, степени сжатия, интенсивности охлаждения цилиндров, нагрузки на двигатель, степени износа цилиндро-поршневой группы двигателя.
С повышением частоты вращения коленчатого вала и степени сжатия мощность будет возрастать.
При интенсивном охлаждении цилиндра, увеличении зазоров между кольцами и цилиндром вследствие их износа мощность будет снижаться.
Если рабочая смесь перед воспламенением подвергается воздействию высоких температур и давлений, нормальное сгорание при определенных условиях может перейти в детонационное.
Детонация (в двигателях внутреннего сгорания) — быстрый, приближающийся к взрыву процесс горения топливной смеси в цилиндре карбюраторного двигателя, сопровождающийся неустойчивой работой (металлический стук в цилиндре, дымный выпуск и др.), износом и разрушением деталей.
Повышение давления и температуры в цилиндре приводит к образованию активных центров цепных реакций, в результате чего часть рабочей смеси самовоспламеняется раньше, чем к ней подойдет фронт основного пламени. При этом в камере сгорания возникают и распространяются волны давления, оказывающие влияние на процесс дальнейшего распространения фронта пламени и характер изменения давления в цилиндре.
Читайте также: Зеркальный цилиндр что это
Внешним признаком детонационного сгорания является появление звонких металлических стуков, возникающих при отражении ударных волн от стенок камеры сгорания. Работа двигателя при детонационном сгорании сопровождается увеличением тепловых и механических нагрузок на детали кривошипно-шатунного механизма, снижением мощности, дымным выхлопом и ухудшением экономичности.
Детонационное сгорание рабочей смеси возникает при несоответствии сорта бензина и степени сжатия, слишком больших углах опережения зажигания (раннее зажигание), при перегрузке двигателя и его перегреве, повышенном нагарообразовании на стенках камеры сгорания. Длительная работа двигателя при детонационном сгорании недопустима, так как приводит к износу и разрушению деталей кривошипно-шатунного механизма, неполному сгоранию топлива и ухудшению топливной экономичности.
При работе двигателя с полной нагрузкой иногда наблюдается преждевременное воспламенение рабочей смеси из-за местного перегрева стенок камеры сгорания (при нагаре на стенках) или электродов свечи зажигания при несоответствии тепловой характеристики свечи степени сжатия в цилиндре двигателя. Преждевременное воспламенение рабочей смеси приводит к тому, что наибольшее давление газа в цилиндре достигается еще до прихода поршня в ВМТ, при этом резко снижается мощность двигателя; это явление может привести к перегреву поршня и его прогоранию.
Свеча зажигания служит для получения искрового разряда в камере сгорания, тепловое воздействие которого воспламеняет рабочую смесь. Условия работы свечи зажигания характеризуются значительными термическими, электрическими и механическими нагрузками.
Тепловой баланс и конструкция свечи зажигания: 1 — контактный наконечник;
2 — проводящий стержень; 3 — керамический изолятор;
4 — металлический корпус; 5 — проводящий герметик; 6 — конус изолятора; 7 — центральный электрод; 8 — боковой электрод
Для обеспечения бесперебойной работы свечи зажигания необходимо поддерживать температуру ее теплового конуса в пределах 700—800 °С. При такой температуре нагар, отлагающийся на конусе и электродах свечи, выгорает и происходит ее самоочищение. Если температура теплового конуса выше 800—900 °С, может возникнуть «калильное зажигание», когда рабочая смесь воспламеняется не от электрической искры, а от нагретых до высокой температуры электродов и поверхности изолятора. При температуре теплового конуса ниже 500 °С изолятор нижней части свечи покрывается нагаром, что приводит к снижению пробивного напряжения и к перебоям в работе двигателя из-за возможных пропусков зажигания рабочей смеси. Тепловой баланс свечи зажигания представлен на рисунке выше.
«Горячие» и «холодные» типы свечей зажигания
Для поддержания необходимой температуры теплового конуса выпускаются свечи зажигания с различной степенью теплоотдачи. В двигателях с невысокой степенью сжатия применяют свечи зажигания с малой теплоотдачей, называемые горячими. Для двигателей с повышенной степенью сжатия применяют «холодные» свечи. Горячие свечи зажигания имеют удлиненную нижнюю часть изолятора и более широкую расточку корпуса, а «холодные» — укороченную нижнюю часть изолятора и узкую расточку корпуса.
На практике иногда приходится заменять свечи одной фирмы на свечи другой. Такая замена возможна, если основные параметры свечей совпадают: тепловая характеристика, размер, шаг и длина резьбы на корпусе. Длина резьбы на корпусе свечи должна соответствовать длине резьбы в головке цилиндра.
Если резьбовая часть свечи слишком длинная, то она выступает в камеру сгорания. При этом выступающие в камеру сгорания витки могут повредить поршни и клапаны, витки перегреваются и закоксовываются. Иногда такие свечи невозможно выкрутить.
Если длина резьбы свечи короткая, то ее искровой промежуток находится внутри свечного отверстия цилиндра, поэтому ухудшаются условия воспламенения топливовоздушной смеси, свеча не очищается, свободные витки отверстия цилиндра закоксовываются.
Для правильного применения необходимо знать особенности маркировки свечей зажигания. Разные производители применяют свои системы маркировки.
Получение повышенной удельной мощности в быстроходном 2-тактном двигателе требует решения проблемы качественной очистки цилиндра от отработавших газов и наполнения его свежим зарядом.
В 2-тактных двигателях более равномерно происходит вращение коленчатого вала, так как рабочий ход осуществляется за каждый его оборот.
Недостатки: менее совершенная очистка цилиндров от продуктов сгорания; меньшая экономичность из-за потери части горючей смеси через выпускные окна при продувке; повышенный расход смазочного масла. Устранение отмеченных недостатков позволит расширить область применения 2-тактных двигателей.
📺 Видео
Бедная смесь: что это значит и почему это плохо? Разберемся!Скачать
ТОСОЛ в ЦИЛИНДРАХ Симптомы Диагностика Ремонт (К4М)Скачать
Смесеобразование и сгорание в цилиндре дизельного и бензинового двигателя (Подробный фильм)Скачать
ХИТРЫЕ ПРОПУСКИ ВОСПЛАМЕНЕНИЯ, КОТОРЫХ НЕТ...Скачать
Как горит топливо в цилиндре дизеляСкачать
Принцип работы двигателя. 4-х тактный двигатель внутреннего сгорания (ДВС) в 3DСкачать
ПРОПУСКИ ЗАЖИГАНИЯ(ВОСПЛАМЕНЕНИЯ) Причины появления. 🔥🔥🔥Скачать
Моделирование во FlowVision. Цилиндр двигателя внутреннего сгорания.Скачать
Датчики двигателя внутреннего сгорания в 3D. Основы.Скачать
ДЕТОНАЦИЯ ДВИГАТЕЛЯ: почему возникает, как распознать и не допустить?Скачать
Причины ПРОГОРАНИЯ клапанов двигателя. Признаки когда прогорел клапанСкачать
Урок 132 (осн). Двигатель внутреннего сгоранияСкачать
ПРИЧИНЫ БОГАТОЙ СМЕСИ. БОГАТАЯ СМЕСЬ (инжектор). СИЛЬНО БОГАТАЯ СМЕСЬ.Скачать
БЕНЗИНОВЫЙ ДВИГАТЕЛЬ ПРИНЦИП РАБОТЫСкачать
Говорю почему не работает один цилиндр двигателяСкачать
Система впрыска водыСкачать
7 признаков пробитой прокладки головки блокаСкачать
Общее устройство бензиновых и дизельных двигателей внутреннего сгоранияСкачать