Характеристики компрессоров для бытовых холодильников

Характеристики компрессоров для бытовых холодильников

Уже давно никто не обращает внимание на то, как работает главный кухонный агрегат. Мы то и дело слышим мурчащие, вздрагивающие звуки, но никто из нас не задумывается, что они напрямую указывают, какой тип компрессора установлен в холодильнике. Какой компрессор лучше для холодильника — определяет конструктивный блок. Мало кто знает, какие бывают компрессоры для холодильников: инверторного и линейного типа. Чаще всего встречаются холодильники с инверторным типом, хотя линейный вариант считается традиционным.

Те покупатели, которые знают, какие бывают виды компрессоров для холодильников, часто интересуются, какой будет работать лучше, и с каким оборудованием холодильник дольше прослужит в эксплуатации.

Характеристики компрессоров для бытовых холодильников

Видео:Компрессоры Embraco Aspera. Модели и характеристикиСкачать

Компрессоры Embraco Aspera. Модели и характеристики

Линейный тип компрессора холодильника

Линейный тип компрессора для холодильника считается привычным, так как уже много лет в нашем быту функционируют именно такие холодильники. Такой агрегат работает следующим образом: как только холодильник будет включен, датчик самостоятельно определяет температурный режим в камере и сопоставляет выбранный им вариант с заданным. Если же температуры разнятся, то система начинает функционировать в полную мощность. При этом, обратный процесс охлаждения происходит так же максимально быстро. Компрессор выключается, как только в системе установится заданная температура. Но датчик не перестает постоянно контролировать показатели температуры.

Видео:Как подобрать компрессор при замене. Ремонт холодильниковСкачать

Как подобрать компрессор при замене. Ремонт холодильников

Инверторный тип компрессора холодильника

Инверторный агрегат работает несколько по другой схеме. Инверторная холодильная система не предполагает выключение и включение компрессора. Он будет продолжать свою бесперебойную работу даже в режиме максимальной нагрузки. Компрессор работает плавно и размеренно. Как только холодильник будет включен – заданный показатель температуры система достигнет максимально быстро.

Видео:Выбираем КОМПРЕССОР ДЛЯ ХОЛОДИЛЬНИКАСкачать

Выбираем КОМПРЕССОР ДЛЯ ХОЛОДИЛЬНИКА

Различия инвенторного и линейного компрессоров в холодильниках

Говоря о минусах того или типа компрессорах для холодильников, стоит сказать, что линейный агрегат несколько уступает инверторному ввиду постоянных включений и отключений. В связи с этим система терпит регулярные перенапряжения, а это сказывается на электрической сети и нагрузке на нее. К тому же, большое значение при выборе покупатели обращают на потребление электроэнергии – в линейном типе она выше.

А вот у инверторных агрегатов можно отметить несколько достоинств:

  • Потребление электроэнергии сведено до минимума, чего не сказать о линейном компрессоре;
  • Никакого постороннего навязчивого шума – агрегат работает, не набирая максимальные обороты;
  • Увеличенная продолжительность работы такого оборудования в связи с отсутствием перепадов напряжения и периодического отключения, что не предполагает высокого нагрузки на систему.

Ознакомившись со списком преимуществ инверторных холодильников, нельзя сказать, что линейные системы определенно хуже. Нет, они также имеют свои плюсы, благодаря которым пользуются спросом:

  • Являются экологически чистым оборудованием – для работы применяются охлаждающие вещества с абсолютной безопасностью. Второе название таких холодильников – «зеленые». Их стали так называть в связи с безвредностью для окружающей среды;
  • Линейный компрессор отличается эффективностью использования энергии, его высокая экономичность заслуживает А++ класс по энергопотреблению;
  • Минимальная вибрация и отсутствие шумов во время работы агрегата, а также в случае его включения и отключения. Устройство оснащено опциями тихого старта и остановки.

Инверторные холодильники с таким видом компрессоров очень быстрым темпом стали частью нашей жизни. Но далеко не каждый готов отказаться от линейного устройства, уступающего в стоимости, для наслаждения бесшумной работой агрегата, учитывая, что качество заморозки у обоих типов одинаковое.

При этом, линейные модели не менее долговечны, экологичны и энергоэффективны инверторных. Да и все мы давно привыкли, что работающий на кухне холодильник издает шум и вибрацию – мы на это не обращаем внимания.

Видео:⚠️ КАК РАБОТАЕТ КОМПРЕССОР ⚠️ для ХОЛОДИЛЬНИКА ❄️Скачать

⚠️ КАК РАБОТАЕТ КОМПРЕССОР ⚠️ для ХОЛОДИЛЬНИКА ❄️

Холодильные агрегаты отечественных холодильников

Оглавление.

  1. Компрессор с кривошипно-шатунным механизмом
  2. Кривошипно-кулисный мотор-компрессор
  3. Обозначения компрессоров
  4. Электродвигатель.
  5. Конденсатор.
  6. Испаритель.
  7. Капиллярная трубка.
  8. Фильтр.
  9. Адсорбенты.
  10. Осушительный патрон.
  11. Индикатор влажности.
  12. Установки для осушки масла.
  13. Работа холодильного агрегата.

1. Холодильный агрегат

Холодильный агрегат бытового холодильника состоит из мотор-компрессора, испарителя, конденсатора, системы трубопроводов и фильтра-осушителя.

В наиболее распространенных бытовых холодильниках компрессор установлен внизу, под шкафом, конденсатор — на задней стенке, а испаритель образует небольшое морозильное отделение в верхней части камеры. Иногда применяется иная компоновка: компрессор устанавливают на шкафу, горизонтальный и частично наклонный конденсатор— над ним, а испаритель, как и в предыдущем случае, — в верхней части камеры, т.е. под компрессором.

В напольных холодильниках различают три типа агрегатов: агрегаты с испарителем, который устанавливают через люк задней стенки шкафа; агрегаты с испарителем, который монтируют через дверной проем; несъемные холодильные агрегаты, установленные в шкаф и залитые пенополиуретаном.

В бытовых холодильниках отечественного производства применяют одноцилиндровые поршневые непрямоточные компрессоры трех типов: ДХ, ФГ и ХКВ, работающие на хладоне-12 и озонобезопасных хладагентах.

Компрессор ДХ имеет кривошипно-шатунный механизм, горизонтальный вал с частотой вращения 1500 об/мин и наружную подвеску, а компрессоры ФГ и ХКВ — кривошипно-кулисный механизм с вертикальным валом с частотой вращения 3000 об/мин и внутреннюю подвеску.

Мотор-компрессоры типов ДХ и ФГ можно внешне отличить по подвеске (рис. 1.).

В мотор-компрессоре ДХ компрессор и двигатель закреплены жестко в кожухе, подвешенном (или опирающемся) на раме и пружинах.

Рис. 1. Мотор-компрессоры:

а — с внутренней подвеской в кожухе; б — с наружной подвеской кожуха на двух пружинах; в — с наружной подвеской кожуха на четырех пружинах

Компрессор и двигатель мотор-компрессора ФГ подвешены на пружинах внутри кожуха, а кожух жестко закреплен на раме. Кроме внешнего различия (по подвеске) эти компрессоры и двигатели отличаются также своей конструкцией.

Пуск и защиту электродвигателя компрессора осуществляют с помощью пускозащитного реле.

Таблица 1 . Технические характеристики компрессоров бытовых холодильников
ДХ-1010ДХ2-1010ФГ-0,100ФГ-0,225
Холодопроизводительность, Вт165140116145
Потребляемая мощность, Вт180160135150
Частота вращения вала, об/мин1450145030003000
Диаметр цилиндра, мм27272123
Ход поршня, мм161414,214,2
Масса компрессора, кг141499,5
Масса масла, г430430350350

Компрессор и электродвигатель агрегата соединены общим валом и заключены в герметичный кожух.

Компрессор обеспечивает циркуляцию холодильного агента в системе агрегата. Он определяет работоспособность холодильника, его экономичность и производительность. В бытовых холодильниках установлен одноцилиндровый компрессор поршневого типа, который приводится в движение электродвигателем.

Рис. 2. Компрессор с электродвигателем:

1 — кожух; 2 — кольцо замочное переднего подшипника; 3 — штифт; 4 — передний подшипник; 5 — винт крепления компрессора; 6 — коленчатый вал; 7, 32 — пружинные шайбы; 8 — шайба; 9 — корпус компрессора: 10 — всасывающий клапан: 11 — винт крепления головки цилиндра; 12 — головка цилиндра с глушителями; 13 — фланцевая гайка; 14, 38 — крышки кожуха; 15 — запорная игла; 16 — пробка штуцера заполнения; 17 — электродвигатель; 18 — ротор электродвигателя; 19 — редукционный клапан; 20 — пружина редукционного клапана; 21 — заглушка; 22 — плунжер масляного насоса: 23 — пружина плунжера; 24 — заглушка масляного насоса; 25 — поршень; 26 — шатун; 27 — крышка нижней головки шатуна; 28 — пружинная шайба; 29 — болт крепления крышка; 30 — приемник масляного насоса; 31 — крышка приемника масляного насоса; 33 — винт крепления приемника; 34 — пружина клина; 35 — клин поршневого пальца; 36 — фиксатор поршневого пальца: 37 — поршневой палец; 39 — защитная шайба переходного контакта

Компрессор с кривошипно-шатунным механизмом имеет чугунный корпус 9 (рис. 2). В верхней части корпуса находится цилиндр, по обе стороны которого внизу расположены подшипники коленчатого вала. Внутри цилиндра расположен стальной поршень 25, который с помощью чугунного шатуна 26 соединен с шейкой коленчатого вала 6. Крышка 27 нижней головки шатуна съемная, без вкладышей. В шатуне закреплен поршневой палец 37. Фиксатор 36 поршневого пальца обеспечивает надежное соединение пальца с верхней головкой шатуна и бесшумность в работе.

Читайте также: Ручной компрессор для продувки пыли

В верхней части поршня имеются две канавки, заполняющиеся при работе маслом и обеспечивающие компрессию в цилиндре. К верхнему торцу цилиндра четырьмя винтами привернута головка 12, собранная с клапанным устройством и глушителями. Головка цилиндра в сборе с глушителями состоит из нагнетательного клапана, седла клапана и глушителя нагнетания и всасывания. Корпус головки стальной, он состоит из двух камер.

Верхняя камера всасывания с двумя всасывающими трубками и глушителем может соединяться с цилиндром через отверстия, расположенные по окружности в дне камеры, закрытые снизу всасывающим клапаном. Нижняя камера нагнетания с нагнетательной трубкой и глушителем может соединяться с цилиндром через отверстия, расположенные по окружности в седле и закрытые нагнетательным клапаном. Седло запрессовано в корпус головки и вместе с нагнетательным клапаном склепано в центре с корпусом. Оба клапана пластинчатые, стальные.

Клапаны компрессора работают следующим образом. При движении поршня вниз всасывающий клапан, прижатый по окружности к кромке седла, отходит от нее вследствие образующегося в цилиндре разрежения. Пары хладона из кожуха компрессора через всасывающие трубки и глушитель попадают в камеру всасывания, откуда через отверстия в корпусе головки поступают в цилиндр. При обратном движении поршня всасывающий клапан препятствует выходу хладона в камеру нагнетания. Сжатые пары хладона через отверстия в седле, приподняв по всей окружности нагнетательный клапан, поступают в камеру нагнетания, а оттуда через нагнетательный патрубок и глушитель в нагнетательную трубку. Смазка трущихся деталей компрессора осуществляется рефрижераторным маслом, залитым в кожух компрессора при помощи ротационного насоса, расположенного в корпусе компрессора. Кожух представляет собой цилиндр, закрытый с обеих сторон наглухо приваренными крышками. Внутри кожуха имеется кольцевой выступ, по одну сторону которого запрессован компрессор, по другую — статор электродвигателя.

Корпус компрессора и статор электродвигателя скреплены между собой четырьмя стяжными болтами. В одну из крышек (со стороны статора) впаяны проходные контакты, через которые подается напряжение на электродвигатель, а также штуцер (или трубка) для заполнения агрегата маслом и хладоном. Для уменьшения шума во время работы холодильника кожух мотор-компрессора подвешен на пружинах к раме холодильного агрегата.

Кривошипно-шатунный компрессор морально устарел и заменяется высокооборотным (частота вращения 3000 об/мин) компрессором кривошипно-кулисного типа с внутренней подвеской. К достоинствам этих компрессоров следует отнести меньшую массу и габариты, лучшие показатели по теплоэнергетическим характеристикам, низкий уровень звука и вибраций.

Кривошипно-кулисный мотор-компрессор с вертикальным расположением вала подвешен на пружинах 23 (рис. 3) внутри герметичного кожуха 1. В зависимости от конструкции подвески пружины работают на сжатие или растяжение и служат для гашения колебаний, возникающих при работе компрессора. Пружины крепятся на кронштейнах, находящихся в верхней части кожуха, и ввинчиваются в отверстия специальных приливов на корпусе 6.

Корпус компрессора в свою очередь приливами опирается на пружины.

Рис. 3. Кулисный мотор-компрессор:

1 — кожух в сборе; 2 — ротор; 3 — статор; 4, 5, 9 — винты; 6 — корпус компрессора; 8 —штифты; 10 —головка цилиндра; 11 — прокладка клапана нагнетания; 12 — нагревательный клапан; 13 — седло клапанов; 14 — всасывающий клапан; 15 — прокладка всасывающего клапана; 16, 17 — цилиндры; 18 — поршень; 19 — обойма; 20 — ползун; 21 — вал; 22 — трубка; 23 — буферная пружина; 24 — шпилька

Электродвигатель однофазный, асинхронный, с пусковой обмоткой. Для пуска двигателя и защиты от перегрузок применяют пускозащитное реле, соединенное с двигателем при помощи колодки зажимов, закрепленной на проходных контактах пластинчатой скобой. Реле установлено на раме.

Ротор 2 электродвигателя помещен непосредственно на валу 21 компрессора. Статор 3 прикреплен к корпусу 6 компрессора четырьмя винтами 4.

Статор набран из штампованных листов электротехнической стали. Обмотка статора двухполюсная, четырехкатушечная. Корпус компрессора чугунный, одновременно служащий опорой вала. Цилиндр 16 отлит вместе с глушителями. Он устанавливается на корпусе мотор-компрессора но четырем штифтам 8 и крепится двумя винтами. Противовес отлит вместе с кривошипным валом. Для уменьшения инерционных масс поршень 18 изготовлен полым из листовой стали. Обойма 19 свернута из листовой стали. Поршень соединен с ней пайкой медистыми припоями. Ползун 20 кулисы чугунный. На торце цилиндра установлена прокладка 15 всасывающего клапана и сам клапан 14 по двум установочным цилиндрическим штифтам 8. Нагнетательный клапан 12 вместе с ограничителем крепится к седлу заклепками. Клапаны — пружинные пластинки из стальной высокоуглеродистой, термически обработанной ленты — установлены на штифты 8. На тех же штифтах установлены скобы, которые ограничивают подъем клапана. Высота подъема всасывающего клапана 0,5±0,08 мм, нагнетательного — 1,18 мм. Диаметр всасывающего отверстия 5 мм, нагнетательного — 3,4 мм.

Седло 13 клапанов и головка 10 цилиндра отлиты из чугуна. Вал 21 ротора 2 вращается в подшипнике в корпусе компрессора. Кожух 1 мотор-компрессора изготовлен из листовой стали.

Трущиеся части компрессора смазываются маслом под действием центробежной силы через косое отверстие в нижнем торце коренной шейки вала. При вращении вала 21 масло, попадая в наклонный канал, поднимается вверх и попадает к трущейся паре вал 21 — корпус 6 компрессора. Дальше по винтовой канавке масло поступает к паре вал 21 —ползун 20. Пара поршень 18 — цилиндр 16 смазывается разбрызгиванием.

Таблица 2 . Классификация компрессоров в зависимости от описанного объема
ТипоразмерОписанный объем, не более
в см 3 *с -1 *(м 3 *ч -1 )в м 3 /1 ход (см -1 ход)
при напряжении сети 220 В и частоте 50 Гцпри напряжении сети 115 В и частоте 60 Гцпри напряжении сети 220 В и частоте 50 Гц
5250(0,9)5*10 -6 (5)
6315(1,134)378(1,36)6,3*10 -6 (6,3)
8400(1,44)8*10 -6 (8)

Примечание: описанный объем — объем, который вытесняется поршнем за единицу времени или за один ход при номинальном числе оборотов.

Пары хладона всасываются из кожуха в цилиндр 16 через глушитель всасывания и нагнетаются через глушитель нагнетания в трубку 22. Змеевик нагнетательной трубки 22 способствует гашению колебаний мотор-компрессора, корпус которого опирается на три пружины 23. Пружины предохраняет от выпадания шпилька 24.

Кожух 1 закрыт сверху крышкой 7, приваренной по фланцу и ограничивающей перемещение мотор-компрессора вверх.

Налажен выпуск хладоновых герметичных компрессоров с кривошипно-кулисным механизмом, вертикальной осью вращения (ХКВ) и описанным объемом (табл. 2) до 400 см 3 *с -1 (1,44 м 3 *ч -1 ), встроенным двухполюсным однофазным асинхронным электродвигателем и пускозащитным реле. Эти компрессоры предназначены для холодильных агрегатов с капиллярной трубкой и применяются в бытовых холодильниках и морозильниках, работающих на хладоне-12 и рассчитанных на температуру кипения в испарителе от минус 10 до минус 30 °С.

Читайте также: Ремкомплект для компрессора делфи

Компрессоры подразделяют на следующие исполнения.

В зависимости от номинального напряжения и частоты тока:

  • 1 — при напряжении сети 220 В и частоте 50 Гц;
  • 2 — при напряжении сети 115 В и частоте 60 Гц.

В зависимости от электродвигателя и пускозащитного реле:

  • Д — двухполюсный однофазный асинхронный электродвигатель холодильной машины (ДХМ), пускозащитное, токовое, комбинированное реле (РТК);
  • Л — двухполюсный однофазный асинхронный электродвигатель (ЭД) и двухполюсный однофазный асинхронный электродвигатель с повышенным пусковым моментом (ЭДП), пускозащитное комбинированное реле (Р).

В зависимости от наличия устройств охлаждения:

  • Б — без устройства для дополнительного охлаждения;
  • М — с устройством для дополнительного охлаждения.

В зависимости от условий эксплуатации:

  • УХЛ — для условий эксплуатации в районах с умеренным и холодным климатом;
  • Т — для условий эксплуатации в районах с тропическим климатом.

Пример условного обозначения компрессора типоразмера 5, для сети напряжением 220 В и частотой тока 50 Гц, с электродвигателем ЭД и пускозащитным реле типа Р, без дополнительного охлаждения, климатического исполнения УХЛ: ХКВ5 — 1 ЛБ УХЛ (ГОСТ 17008).

Основные параметры компрессоров даны в табл. 3.

Таблица 3. Технические характеристики компрессоров ХКВ
КомпрессорРабота на хладоне-12Работа на воздухеМасса, кг, не болееУдельная масса, кг/(Вт*год), не болееУдельная энергоемкость, Вт/Вт, не более
Номинальная холодо- производи-тельность, Вт(ккал/ч), предельные отклонения ±7%Потребляемая мощность, Вт, не болееУдельная холодо-производительность, Вт/Вт, но не менееОбъемная производи-тельность, не болееПотребляемая мощность, Вт, не более
до
01.01.90
с
01.01.90
ХКВ5-1ЛБ УХЛ115(100)1400,830,8512-10 -5 (7,3)1559,20,00531,2
ХКВ6-1ДБ УХЛ145(125)1700,910,9515,3-10 -5 (9,2)1759,70,00461,1
ХКВ6-1ЛБ УХЛ145(125)1650,910,9515,3-10 -5 (9,2)1759,70,00461,1
ХКВ6-1ДМ УХЛ150(130)1700,930,9715,3-10 -5 (9,2)17510,20,00461,08
ХКВ6-1ЛМ УХЛ150(130)1700,930,9715,3-10 -5 (9,2)17510,20,00461,08
ХКВ6-1ЛМ Т125(108)1700,830,8615,3-10 -5 (9,2)17510,20,00531,2
ХКВ6-2ДМ УХЛ165(142)1900,860,918-10 -5 (11)19010,20,0041,16
ХКВ6-2ДМ Т145(125)1900,820,8518-10 -5 (11)19010,20,00461,2
ХКВ8-1ЛМ УХЛ185(160)1900,991,0121-10 -5 (12,6)19010,20,0041,01
ХКВ8-1ЛМ Т160(138)1900,870,921-10 -5 (12,6)19010,20,00451,15
  1. Масса компрессора включает массу заправленного маслом компрессора без учета массы пускозащитного реле и монтажных изделий.
  2. Удельная холодопроизводительность определяется как отношение значений холодопроизводительности к потребляемой мощности.
  3. Удельную массу определяют как отношение значений массы к холодопроизводительности, умноженной на установленный срок службы.
  4. Удельную энергоемкость определяют как отношение потребляемой мощности к холодопроизводительности.
  5. Объемную производительность по воздуху и потребляемую мощность определяют на стенде при следующих условиях:
  • температура обмотки электродвигателя компрессора 85±10 °С;
  • напряжение номинальное ±2%;
  • давление всасывания избыточное 1,96*10 3 Па;
  • давление нагнетания избыточное 78,5*10 4 Па.

Корректируемый уровень звуковой мощности (уровня звука) компрессоров в установившемся режиме не должен превышать: 44 дБА — для типоразмеров 5 и 6; 46 дБА — для типоразмеров 8.

  1. Сопротивление электрической изоляции компрессора между токоведущими частями и кожухом должно быть не менее 10 МОм при климатических условиях производственного помещения.
  2. Электрическая изоляция между токоведущими частями и кожухом компрессора в холодном состоянии должна выдерживать испытательное напряжение 1250 В.
Электродвигатель.

Холодильные агрегаты выпускаются на одно напряжение — 127 или 220 В. Электродвигатель холодильника в нормальных условиях работает циклично, т.е. периодически включается и выключается через определенные промежутки времени. Отношение части цикла, в продолжение которой электродвигатель работает, к общей продолжительности цикла называют коэффициентом рабочего времени. Чем больше коэффициент рабочего времени (при постоянной температуре в помещении тем ниже температура в холодильной камере и тем больше среднечасовой расход электроэнергии.

Определенную цикличность в работе холодильника (коэффициент рабочего времени) обеспечивает датчик-реле температуры — прибор, регулирующий температуру в шкафу холодильника.

Для привода герметичных компрессоров и работы в среде хладона и рефрижераторного масла предназначаются однофазные короткозамкнутые асинхронные электродвигатели. Они выпускаются на номинальное напряжение 127 или 220 В с номинальной мощностью 60, 90, 120 Вт. Частота вращения 1500 и 3000 об/мин.

Электродвигатели работают при отклонениях напряжений от номинального значения в пределах-15. +10%.

На статоре двигателя расположены две обмотки — рабочая и пусковая. Переменный ток, проходя по рабочей обмотке, создает переменное магнитное поле, наводящее токи в короткозамкнутом роторе двигателя. Электромагнитная сила, возникающая в результате взаимодействия магнитного поля с токами ротора, взаимно уравновешивается, благодаря чему ротор стоит на месте относительно магнитного поля статора.

Для образования вращающегося магнитного поля и сдвига ротора с места применяют дополнительную пусковую обмотку. При включении обеих обмоток образуется вращающееся магнитное поле, которое увлекает за собой ротор. Когда частота вращения ротора достигает 75-80% частоты вращающегося магнитного поля в рабочей обмотке, пусковая обмотка отключается пусковым реле.

В холодильных агрегатах применяются электродвигатели типа ДХМ, ЭД, ЭДП и др.

Конденсатор.

Конденсатор холодильного агрегата является теплообменным аппаратом, в котором хладагент отдает тепло окружающей его среде.

Пары хладагента, охлаждаясь до температуры конденсации, переходят в жидкое состояние. Конденсатор представляет собой трубопровод, изогнутый в виде змеевика, внутрь которого поступают пары хладона.

Змеевик охлаждается снаружи окружающим воздухом. Наружная поверхность змеевика обычно недостаточна для отвода тепла воздухом, поэтому поверхность змеевика увеличивают за счет большого количества ребер, креплением змеевика к металлическому листу и другими способами.

Широкое распространение получили конденсаторы конвективного охлаждения с проволочным оребрением (рис. 4, а).

Рис. 4. Конденсатор холодильного агрегата:

а— с проволочным орббрением: б — листотрубчатый; в — прокатно-сварной

Конденсатор представляет собой змеевик из медной трубки с приваренными к ней с обеих сторон (друг против друга) ребрами из стальной проволоки диаметром 1,2-2 мм. Ребра из проволоки приваривают к трубке точечной электросваркой или припаивают медью. Применяются также конденсаторы щитовые сзавальцованной трубкой (холодильники ЗИЛ-63, ЗИЛ-64).

В холодильниках старых моделей применялись листотрубчатые конденсаторы. Листотрубчатый щитовой конденсатор (рис. 4, б) состоит из змеевика, который приварен, припаян или плотно прижат к металлическому листу, выполняющему роль сплошного ребра. В листе иногда делают прорези с отбортовкой по типу жалюзи. Это увеличивает теплопередающие поверхности за счет торцов отогнутых металлических язычков и циркуляции воздуха. Диаметр труб 4,75-8 мм, шаг 35-60 мм, толщина листа 0,5-1 мм.

Трубы змеевика на листе обычно располагают горизонтально. В некоторых листотрубчатых конденсаторах их располагают вертикально, чтобы последние витки трубопровода не нагревались от кожуха компрессора. Длина трубопровода конденсатора составляет 6500-14000 мм.

Читайте также: Компрессор для авто качать колеса

Листотрубчатый прокатно-сварной конденсатор (рис. 4, б, в) изготовлен из алюминиевого листа толщиной 1,5 мм с раздутыми в нем каналами змеевика. Конденсатор имеет форму сплюснутой трубы и закреплен на задней стенке шкафа холодильника. При сравнительно небольших размерах конденсатор работает эффективно благодаря высокой теплопроводности алюминия и теплопередачи через однородную среду. Для более эффективной циркуляции воздуха в щите сделаны сквозные просечки. Конденсатор с одной стороны соединен трубопроводами с нагнетательной линией компрессора, а с другой через фильтр и капиллярную трубку — с испарителем.

Для защиты от коррозии конденсатор окрашивают черной эмалью.

Существенным недостатком конденсатора этого типа является его выход из строя при засорении капиллярной трубки. Происходит вздутие листа алюминия и его разрыв.

Испаритель.

В испарителе происходит передача тепла от охлаждаемого объекта к испаряющемуся (кипящему) вследствие этого холодильному агенту.

По принципу действия испарители аналогичны конденсаторам, но отличаются тем, что в конденсаторе холодильный агент отдает тепло окружающей среде, а в испарителях поглощает его из охлаждаемой среды.

В однокамерных холодильниках испаритель предназначен для хранения замороженных продуктов, поэтому его делают в виде полки. Для поддержания низкой температуры испаритель закрывают спереди дверцей, а сзади стенкой. Такой испаритель является низкотемпературным (морозильным) отделением.

В настоящее время применяются алюминиевые испарители, изготовленные прокатно-сварным методом. Исходным материалом для их изготовления служат листы алюминия марки АД, АД-1. Алюминиевые испарители менее долговечны, чем стальные, они рассчитаны на срок службы 6-8 лет.

Испарители имеют каналы различной конфигурации и отличаются способом крепления в холодильной камере. В некоторых холодильных агрегатах испарители отличаются тем, что система каналов у них имеет вместо двух выходных отверстий для присоединения капиллярной и всасывающей трубки лишь одно. У таких агрегатов капиллярная трубка проходит внутри всасывающей. Конец всасывающей трубки приваривают в торце выходного канала испарителя, а капиллярная трубка проходит через выходной канал во входной, где ее обжимают, чтобы не было перетекания хладона из входного канала в выходной.

Для защиты алюминиевых испарителей от коррозии их анодируют в сернокислых или хромокислых ваннах, получая защитную пленку толщиной 10-12 мкм. Для сохранения анодной пленки испаритель дополнительно покрывают лаком УВЛ-3 или эпоксидной смолой. Особое внимание уделяют внутрикоррозийной защите стыков медно-алюминиевых трубок, соединяющих алюминиевый испаритель с медными трубопроводами.

Испарители выпускают различных конструкций. Широкое распространение в холодильниках ранних выпусков имели испарители, изготовленные в виде перевернутой буквы П (рис. 5, а), часто вытянутой во всю ширину камеры, с полкой для продуктов.

Рис. 5. Испарители:

а — в виде перевернутой буквы П; б — 0-образной формы; в —листотрубчатый (вид снизу)

В современных холодильниках с морозильными отделениями во всю ширину камеры испарители делают в виде вытянутой буквы О (рис. 5, б) или повернутой вверх буквы С. Испаритель крепят к потолку или боковым стенкам камеры.

В настоящее время в некоторых моделях двухкамерных холодильников применяют листотрубчатые (рис. 5, в) секционные испарители, плоские, расположенные на задней стенке камеры холодильника или устанавливаемые горизонтально (в этом случае испаритель одновременно является полкой). Трубопровод испарителя диаметром 8 мм прикреплен к металлическому листу с внутренней стороны. Для крепления трубопровода и циркуляции воздуха на листе сделаны просечки.

В холодильниках ранних выпусков («ЗИП-Москва», «Саратов-2» и др.) применялись стальные испарители из двух сваренных листов нержавеющей стали. Стальные испарители отличаются относительно небольшими размерами и большой прочностью.

Капиллярная трубка.

Капиллярная трубка в сборе с отсасывающей служит регулирующим устройством для подачи жидкого хладагента в испаритель. Она представляет собой трубопровод из меди марки ДКРХТ с внутренним диаметром 0,5-0,8 и длиной 2800-6000 мм

(в зависимости от модели холодильника), соединяющий стороны высокого и низкого давления в системе холодильного агрегата. Имея небольшую проходимость (5,6-8,5 л/мин), капиллярная трубка является дросселем и создает перепад давления между конденсатором и испарителем и подает в испаритель определенное количество жидкого хладона.

К преимуществам капиллярных трубок по сравнению с другими дросселирующими устройствами (например, с терморегулирующими вентилями) следует отнести простоту конструкции, отсутствие движущихся частей и надежность в работе. Кроме того, капиллярная трубка, соединяя между собой стороны нагнетания и всасывания, уравнивает давление в системе агрегата при его остановах (рис. 6). Это снижает противодавление на поршень компрессора в момент запуска и позволяет применять электродвигатель компрессора с относительно небольшим пусковым моментом.

Рис. 6. Кривые изменения давления в холодильном агрегате за цикл работы:

1 — давление в капиллярной трубке; 2 — давление в отсасывающей трубке

Недостатком капиллярной трубки является невозможность необходимого регулирования подачи хладона в испаритель при разных температурных условиях эксплуатации холодильника. Учитывая это, проходимость капиллярной трубки устанавливают исходя из нормальных эксплуатационных условий холодильника.

Для улучшения теплообмена между отсасывающими холодными парами и теплым жидким хладагентом, которые движутся противотоком, капиллярную и отсасывающую трубки спаивают между собой на большом участке. В некоторых холодильных агрегатах капиллярную трубку наматывают на отсасывающую или помещают внутри нее.

Фильтр.

Фильтр устанавливают у входа в капиллярную трубку для предохранения ее от засорения твердыми частицами.

Фильтры изготавливают из мелких латунных сеток или металлокерамики. Металлокерамический фильтр состоит из бронзовых шариков диаметром 0,3 мм, сплавленных в столбик конусообразной формы, заключенный в металлический корпус. Капиллярную трубку припаивают к металлокерамическому фильтру под углом 30°. В большинстве холодильников фильтр смонтирован в одном корпусе с осушительным патроном. По краям корпуса расположены сетки, а между сетками — адсорбент. Попадание влаги в систему, заполненную хладоном и смазочным маслом, при воздействии высоких температур в компрессоре приводит к образованию минеральных и органических кислот. Эти кислоты разрушающе действуют на детали компрессора, в первую очередь на электрическую изоляцию встроенного электродвигателя. Капли свободной влаги замерзают в капиллярной трубке и нарушают работу агрегата. Поэтому при изготовлении, монтаже и ремонте холодильные агрегаты (или отдельно узлы) тщательно очищают и осушают.

Адсорбенты.

Для очистки рабочей среды хладоновых холодильных машин от влаги и кислот применяют адсорбенты различных марок. Ими заполняют фильтры-осушители.

Эффективными поглотителями влаги являются синтетические цеолиты МаА-2МШ и NаА-2КТ. Их выпускают в виде таблеток или шариков размером 1,5-3,5 мм. По сравнению с минеральными адсорбентами (силикагелем, алюмогелем и др.) цеолиты хорошо поглощают воду из холодильного агента.

Преимущества цеолита по сравнению с силикагелем становятся еще значительнее при наличии масла в холодильном агенте.

Синтетический цеолит МаА-2МШ предназначен для заполнения осушительных патронов бытовых холодильников, работающих на хладоне-12. Он активно адсорбирует следы воды и почти поглощает холодильные агенты и смазочные масла.

Осушительный патрон.

Служит для поглощения влаги из хладагента и предохранения регулирующего устройства (капиллярной трубки) от замерзания в нем воды. Корпус 2 (рис. 7, а) осушительного патрона состоит из металлической трубки длиной 105-135 мм и диаметром 12-18 мм с вытянутыми концами, в отверстия которых впаивают соответствующие трубопроводы холодильного агрегата.

Рис. 7. Фильтр-осушительный патрон: Источник

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала


    📸 Видео

    Какой фирмы компрессор лучше выбрать для холодильникаСкачать

    Какой фирмы компрессор лучше выбрать для холодильника

    Сравнение производительности мотор-компрессоров НМК 12 АА и НМК 95 ААСкачать

    Сравнение производительности мотор-компрессоров  НМК 12 АА и НМК 95 АА

    Как проверить компрессор холодильника.Позваниваем обмотки.Скачать

    Как проверить компрессор холодильника.Позваниваем обмотки.

    ХОЛОДИЛЬНИК С КАКИМ КОМПРЕССОРОМ ЛУЧШЕСкачать

    ХОЛОДИЛЬНИК С КАКИМ КОМПРЕССОРОМ ЛУЧШЕ

    Установка бу Компрессора - как проверить уровень масла? Как долить масло? Ремонт холодильникаСкачать

    Установка бу Компрессора - как проверить уровень масла? Как долить масло? Ремонт холодильника

    Как выбрать компрессор для гаража или строительства?Скачать

    Как выбрать компрессор для гаража или строительства?

    Холодильник с Инверторным КомпрессоромСкачать

    Холодильник с Инверторным Компрессором

    ДИАГНОСТИКА мотор КОМПРЕССОРА бытового холодильника / как вольтметром замерить сопротивление обмотокСкачать

    ДИАГНОСТИКА мотор КОМПРЕССОРА бытового холодильника / как вольтметром замерить сопротивление обмоток

    Как выбрать компрессор?Скачать

    Как выбрать компрессор?

    5 самых грубых ошибок при выборе холодильника. Объем холодильника. Уровень шума. Ресурс. Свежесть иСкачать

    5 самых грубых ошибок при выборе холодильника. Объем холодильника. Уровень шума. Ресурс. Свежесть и

    Холодильный компрессор | Как это устроено? | DiscoveryСкачать

    Холодильный компрессор | Как это устроено? | Discovery

    ЛУЧШИЙ КОМПРЕССОР ДЛЯ ХОЛОДИЛЬНИКАСкачать

    ЛУЧШИЙ КОМПРЕССОР ДЛЯ ХОЛОДИЛЬНИКА

    Устройство ИНВЕРТОРНОГО линейного компрессора холодильника LGСкачать

    Устройство ИНВЕРТОРНОГО линейного компрессора холодильника LG

    Холодильный компрессор. Виды. ДиагностикаСкачать

    Холодильный компрессор. Виды. Диагностика

    ЭКСПЕРИМЕНТ!!! ЧТО МОЩНЕЕ КОМПРЕССОР ХОЛОДИЛЬНИКА VS КОНДИЦИОНЕРАСкачать

    ЭКСПЕРИМЕНТ!!! ЧТО МОЩНЕЕ КОМПРЕССОР ХОЛОДИЛЬНИКА VS КОНДИЦИОНЕРА

    Какой компрессор лучше? Какой компрессор выбрать для гаража?Скачать

    Какой компрессор лучше? Какой компрессор выбрать для гаража?
Поделиться или сохранить к себе:
Технарь знаток