Интеграл по объему для цилиндра

Авто помощник

Примеры решений произвольных тройных интегралов.
Физические приложения тройного интеграла

Во 2-й части урока мы отработаем технику решения произвольных тройных интегралов , у которых подынтегральная функция трёх переменных в общем случае отлична от константы и непрерывна в области ; а также познакомимся с физическими приложениями тройного интеграла

Вновь прибывшим посетителям рекомендую начать с 1-й части, где мы рассмотрели основные понятия и задачу нахождения объема тела с помощью тройного интеграла. Остальным же предлагаю немного повторить производные функции трёх переменных, поскольку в примерах данной статьи мы будем использовать обратную операцию – частное интегрирование функции .

Кроме того, есть ещё один немаловажный момент: если у Вас неважное самочувствие, то прочтение этой странички по возможности лучше отложить. И дело не только в том, что сейчас возрастёт сложность вычислений – у большинства тройных интегралов нет надёжных способов ручной проверки, поэтому к их решению крайне нежелательно приступать в утомлённом состоянии. При пониженном тонусе целесообразно порешать что-нибудь попроще либо просто отдохнуть (я терпелив, подожду =)), чтобы в другой раз со свежей головой продолжить расправу над тройными интегралами:

Вычислить тройной интеграл

На практике тело также обозначают буквой , но это не очень хороший вариант, ввиду того, «вэ» «зарезервировано» под обозначение объёма.

Сразу скажу, чего делать НЕ НАДО. Не нужно пользоваться свойствами линейности и представлять интеграл в виде . Хотя если очень хочется, то можно. В конце концов, есть и небольшой плюс – запись будет хоть и длинной, но зато менее загромождённой. Но такой подход всё-таки не стандартен.

Интеграл по объему для цилиндра

Видео:Площадь сферы внутри цилиндра. Поверхностный интегралСкачать

Площадь сферы внутри цилиндра. Поверхностный интеграл

В алгоритме решения новизны будет немного. Сначала нужно разобраться с областью интегрирования. Проекция тела на плоскость представляет собой до боли знакомый треугольник:

Сверху тело ограничено плоскостью , которая проходит через начало координат. Предварительно, к слову, нужно обязательно проверить (мысленно либо на черновике), не «срезает» ли эта плоскость часть треугольника. Для этого находим её линию пересечения с координатной плоскостью , т.е. решаем простейшую систему: – нет, данная прямая (на чертеже отсутствует) «проходит мимо», и проекция тела на плоскость действительно представляет собой треугольник.

Интеграл по объему для цилиндра

Не сложен здесь и пространственный чертёж:

В действительности можно было ограничиться только им, поскольку проекция очень простая. …Ну, или только чертежом проекции, так как тело тоже простое =) Однако совсем ничего не чертить, напоминаю – плохой выбор.

Выберем следующий порядок обхода тела:

И перейдём к повторным интегралам:

Актуализируем следующее элементарное правило:

Когда функция интегрируется по какой-либо переменной, то два других аргумента считаются константами. То есть принцип точно такой же, как и при нахождении частных производных от функции трёх переменных, что естественно.

Разбираемся с интегралами:

Видео:Объем параболоида: тройной интеграл в цилиндрической системе координатСкачать

Объем параболоида: тройной интеграл в цилиндрической системе координат

(1) При интегрировании по «зет» и считаются константами. В данном случае присутствует только «игрек», но это не меняет дела. Советую всегда мысленно либо на черновике выполнять проверку. Найдём частную производную по «зет»:
, что и требовалось проверить.

(2) Теперь используем формулу Ньютона-Лейбница: сначала ВМЕСТО «зет» подставляем верхний предел интегрирования , затем – нижний предел (ноль). В результате буквы «зет» остаться не должно!

Сносим трофей в следующий интеграл. По существу, решение свелось к двум переменным и к двойному интегралу:

(1) Используем свойства линейности интеграла, принимая во внимание тот факт, что «игрек» считается константой. Следует отметить, что не возбраняется оставить интеграл единым, раскрыть скобки и привести подобные слагаемые, но это менее рациональный способ (можете попробовать).

Читайте также: Замена цилиндра в суппорте лансер 9

(2) Используем метод подведения под знак дифференциала. Если рассуждения воспринимаются совсем тяжело, мысленно замените «игрек» каким-нибудь конкретным числом, например, «пятёркой».

(3) Интегрируем по «икс» и выполняем проверку:

(4) Используем формулу Ньютона-Лейбница. Сначала ВМЕСТО «икс» (переменной, по которой проводилось интегрирование) подставляем , затем – ноль. После подстановок буквы «икс» остаться не должно!

Причёсываем результат и сносим его в последний интеграл, не теряя находящуюся там константу:

Ответ:

Видео:Пересечение двух цилиндров: объем и площадь поверхности через двойной интегралСкачать

Пересечение двух цилиндров: объем и площадь поверхности через двойной интеграл

Результат безразмерен – просто число и всё.

Следующий пример для самостоятельного решения:

Вычислить тройной интеграл

Примерный образец оформления задачи в конце урока.

До сих пор мы рассматривали два способа решения – это проецирование на плоскость и выбор порядка обхода проекции. Но на самом деле комбинаций больше – тело можно спроецировать на любую из 3 координатных плоскостей и каждую проекцию обойти 2 путями. Таким образом, получается 6 способов решения. И логично предположить, что в общем случае некоторые из них проще, а некоторые – труднее.

Наверняка многие обратили внимание, что в Примере № 13 я выбрал более редкий порядок обхода проекции, хотя ничто не мешало пойти «обычным» путём. Это не случайность.
В результате нахождения интеграла получена сумма , в которой чуть выгоднее считать константой именно «игрек», что при прочих равных условиях (из уравнения прямой одинаково легко выразить ) упрощает решение. А в некоторых задачах выбор порядка интегрирования и вовсе становится ОЧЕНЬ важным:

Вычислить тройной интеграл

Интеграл по объему для цилиндра

Решение: область интегрирования ограничена шестью плоскостями и представляет собой прямоугольный параллелепипед:

У незамысловатых областей можно не обращать внимания на проекцию и придерживаться следующего правила: обход тела осуществляется в направлениях координатных осей. Пределы интегрирования здесь очевидны

Видео:11 класс, 33 урок, Вычисление объемов тел с помощью определённого интегралаСкачать

11 класс, 33 урок, Вычисление объемов тел с помощью определённого интеграла

Но вот с порядком обхода не всё так просто. Если выбрать традиционный путь и сначала интегрировать по «зет», то получается неприятный интеграл , который нужно брать по частям. Аналогичная история, если интегрировать по «игрек»: , тут даже дважды по частям.

Наиболее выгодным путём является первоочередное интегрирование по «икс», в этом случае переменные , а значит, и множитель считаются константами:

Перед тем, как подставить пределы интегрирования, не помешает проверка:
– получена исходная подынтегральная функция.

Буква «икс» испарилась, как оно и должно быть.

Осталось 2 направления обхода , и следующий интеграл рациональнее взять по «зет» чтобы множитель считался константой:

В качестве дополнительного контроля снова смотрим, исчезла ли после подстановки переменная, по которой интегрировали («зет»).

И, наконец, оставшееся направление обхода и оставшийся интеграл:

При подстановках следует проявлять повышенное внимание, так, например, при подстановке нуля в выражение второе слагаемое можно машинально счесть за ноль.

На чистовике, конечно же, не нужно всё расписывать так подробно, анализ порядка интегрирования и промежуточные проверки осуществляются мысленно либо на черновике. Решение оформляется стандартно в 3 пункта, но читатели с хорошим уровнем подготовки могут записать его и «одной строкой»:

Ответ:

Видео:Объем через тройной интегралСкачать

Объем через тройной интеграл

Наверное, это понятно, но на всякий случай закомментирую: буквенные множители-константы следует перемещать справа налево последовательно и без «перескоков» – до тех пор, пока каждая буква «не встретит свой интеграл». Условный пример:

Аналогичное задание для самостоятельного решения:

🎦 Видео

ДИ 10 Вычисление объема цилиндрического тела с помощью двойного интегралаСкачать

ДИ 10 Вычисление объема цилиндрического тела с помощью двойного интеграла

Объем через двойной интегралСкачать

Объем через двойной интеграл

Математический анализ, 44 урок, Тройной интегралСкачать

Математический анализ, 44 урок, Тройной интеграл

Математика без ху!ни. Двойные интегралы. Часть1. Как вычислять.Скачать

Математика без ху!ни. Двойные интегралы. Часть1. Как вычислять.

Тройной интеграл в ДСКСкачать

Тройной интеграл в ДСК

Двойной интеграл / Как находить двойной интеграл через повторный (двукратный) / Два способаСкачать

Двойной интеграл / Как находить двойной интеграл через повторный (двукратный) / Два способа

Цилиндрическая система координат(ЦСК).Тройной интегралСкачать

Цилиндрическая система координат(ЦСК).Тройной интеграл

Математика без ху!ни. Двойной интеграл, вычисление двумя способами.Скачать

Математика без ху!ни. Двойной интеграл, вычисление двумя способами.

Объем цилиндрического тела. ТемаСкачать

Объем цилиндрического тела. Тема

Интегралы №13 Объем тела вращенияСкачать

Интегралы №13 Объем тела вращения

Тройной интеграл в цилиндрических координатах.Скачать

Тройной интеграл в цилиндрических координатах.

Как использовать интеграл в обычной жизни. Математик МГУ и Савватеев #shortsСкачать

Как использовать интеграл в обычной жизни. Математик МГУ и Савватеев #shorts

Двойной интеграл / Как находить двойной интегралСкачать

Двойной интеграл / Как находить двойной интеграл
Поделиться или сохранить к себе:
Технарь знаток