Интегрирование по поверхности цилиндра

Авто помощник

Видео:Площадь сферы внутри цилиндра. Поверхностный интегралСкачать

Площадь сферы внутри цилиндра. Поверхностный интеграл

Вычисление поверхностных интегралов: теория и примеры

Видео:Интеграл: Азы интегрирования. Высшая математикаСкачать

Интеграл: Азы интегрирования. Высшая математика

Понятие поверхностного интеграла первого рода

Поверхностный интеграл — обобщение понятия криволинейного интеграла на случаи, когда интегрирование происходит не по отрезку кривой, а по ограниченной поверхности. Как и криволинейные интегралы, поверхностные интегралы бывают первого рода и второго рода.

Поверхностный интеграл первого рода записывается в виде

где f(M) = f(x,y,z) – функция трёх переменных, а поверхность σ — область интегрирования этой функции. Если f(x,y,z) равна единице, то поверхностный интеграл равен площади поверхности.

Представьте себе довольно большой подсолнух с очень-очень маленькими семечками. Тогда по сумме поверхностей очень-очень маленьких семечек, расположенных на поверхности подсолнуха, можно вычислить поверхность подсолнуха — таким может быть упрощённое толкование поверхностного интеграла. Почему так?

Давайте перейдём к более формальному определению поверхностного интеграла. Поверхность σ разбита на n частей с площадями Δσ 1 , Δσ 2 , . Δσ n . Если выбрать на каждой частичной поверхности (семечке) произвольную точку M i с координатами (ζ i , η i , ς i ,) , то можно составить сумму

Эта сумма называется интегральной суммой для функции f(M) по поверхности σ . Теперь будем максимально увеличивать число таких маленьких частей, а наибольший диаметр Δσ i — наоборот, уменьшать. Если интегральная сумма при стремлении наибольшего из диаметров частей к нулю (то есть, как мы уже отмечали, все части очень маленькие) имеет предел, то этот предел и называется поверхностным интегралом первого рода от функции f(M) по поверхности σ .

Видео:Пересечение двух цилиндров: объем и площадь поверхности через двойной интегралСкачать

Пересечение двух цилиндров: объем и площадь поверхности через двойной интеграл

Вычисление поверхностного интеграла первого рода

Вычисление поверхностного интеграла первого рода производится сводением к двойному интегралу.

Пусть поверхность σ задана уравнением z = z(x, y) , её проекцией на плоскость xOy является область D xy , при этом функция z = z(x, y) и её частные производные и непрерывны в области D xy .

Это и есть формула, выражающая поверхностный интеграл первого рода через двойной интеграл по проекции поверхности σ на плоскость xOy.

Пример 1. Вычислить поверхностный интеграл первого рода

где σ — часть плоскости в первом октанте.

Интегрирование по поверхности цилиндра

Из уравнения плоскости получаем выражение «зет»: .

Тогда частные производные: , и

Поверхность σ является изображённым на чертеже треугольником ABC , а его проекцией на плоскость xOy — треугольником AOB , который ограничен прямыми x = 0 , y = 0 и 3x + y = 6 . От поверхностного интеграла перейдём к двойному интегралу и решим его:

Читайте также: Тормозной цилиндр fiat palio

Видео:Объем через тройной интегралСкачать

Объем через тройной интеграл

Понятие поверхностного интеграла второго рода

Прежде чем перейти к определению поверхностного интеграла второго рода, требуется познакомиться с понятиями стороны поверхностей и ориентированных поверхностей.

Интегрирование по поверхности цилиндра

Пусть в пространстве дана гладкая поверхность σ. На этой поверхности выберем произвольную точку M и проведём через неё вектор нормали к поверхности. Через точку M проведём также на поверхности σ произвольный контур, не имеющий общих точек с границей поверхности σ. Точку M вместе с вектором нормали будем перемещать по контуру так, чтобы вектор нормали постоянно был перпендикулярен поверхности σ. По возвращении точки M в начальное положение возможны два случая: направление вектора нормали сохранится или же поменяется на противоположное.

Если направление вектора нормали не поменяется, то поверхность σ называется двусторонней. Если же при обходе контура направление вектора нормали поменяется на противоположное, то поверхность называется односторонней. Двусторонние поверхности называются ориентированными поверхностями, односторонние — неориентированными поверхностями.

Интегрирование по поверхности цилиндра

Пример односторонней поверхности — лист Мёбиуса (на рисунке выше), который можно сделать из полоски бумаги, одна сторона которой повёрнута на 180 градусов, и затем концы склеены. И вот что здесь важно: для односторонней поверхности понятие поверхностного интеграла второго рода не вводится.

Так что будем рассматривать только двусторонние поверхности. Примеры двусторонних поверхностей — плоскости, сфера, эллипсоил, параболоид.

Положительную сторону двустороней поверхности определяет направление вектора нормали. Противоположная сторона поверхности называется отрицательной. Положительной стороной поверхности называется её верхняя сторона. Если единичные векторы нормали составляют острые углы с осью Oz, то выбрана верхняя сторона поверхности z = z(x, y) , если углы тупые, то нижняя сторона поверхности.

Как и в случае поверхностного интеграла первого рода, поверхность можно разбить на n частей. При формулировке понятия поверхностного интеграла первого рода в интегральной сумме присутствовали площади каждой из частей, на которые умножаются значения функции f(M i ) . В случае поверхностного интеграла второго рода берутся площади не самих частей, а площади их проекций на координатные плоскости. А функцию трёх переменных для отличия от интеграла первого рода обозначим R(x,y,z) . Тогда интегральная сумма запишется так:

где Δs i — площади упомянутых проекций частей стороны поверхности на координатную ось (пока будем считать, что на ось xOy).

При таких соглашениях и обозначениях определение поверхностного интеграла второго рода аналогично определению интеграла первого рода. А именно: поверхностным интегралом второго рода называется предел данной интегральной суммы при стремлении к нулю наибольшего из диаметров частей рассматриваемой поверхности.

В данном случае функция R(x,y,z) интегрируема по переменным x и y, так как части поверхности проецировались на плоскость xOy.

Аналогично можно записать и два других поверхностных интеграла второго рода:

Читайте также: Замена главного цилиндра сцепления шевроле авео т300 2014

(функция P(x,y,z) интегрируема по переменным y и z, так как части поверхности проецируются на плоскость yOz),

(функция Q(x,y,z) интегрируема по переменным z и x, так как части поверхности проецируются на плоскость zOx).

называется общим поверхностным интегралом второго рода и обозначается

Видео:Зачем нужен ИНТЕГРАЛ. Объяснение смыслаСкачать

Зачем нужен ИНТЕГРАЛ. Объяснение смысла

Вычисление поверхностного интеграла второго рода

Поверхностный интеграл второго рода вычисляется путём разложения общего поверхностного интеграла второго рода на сумму поверхностных интегралов (см. окончание предыдущего параграфа) и сведением каждого из них к двойному интегралу.

Рассмотрим подробно вычисление интеграла

Пусть поверхность σ задана уравнением z = z(x, y) . Положительную сторону поверхности обозначим , отрицателную , а проекцию на плоскость xOyD xy .

Таким образом, получаем формулу для вычисления поверхностного интеграла второго рода:

Если выбрана отрицательная сторона поверхности, то знак интеграла меняется:

Аналогично вычисляются два других отдельных интеграла — слагаемых общего:

Пример 2. Вычислить поверхностный интеграл второго рода

где σ — верхняя сторона части плоскости , отсечённая плоскостями y = 0 и y = 4 и находящаяся в первом октанте.

Интегрирование по поверхности цилиндра

Решение. Чертёж — на рисунке сверху. По определению получаем сумму трёх двойных интегралов:

Второй интеграл равен нулю, так как плоскость σ параллельна оси Oy . Поэтому найдём первый и третий интегралы:

Остаётся лишь сложить все отдельные интегралы и получить общий поверхностный интеграл второго рода:

Если требуется вычислить поверхностный интеграл второго рода по замкнутой поверхности, можно перейти к тройному интегралу, используя формулу Остроградского. Тогда, если функции P(x,y,z) , Q(x,y,z) и R(x,y,z) и их частные производные , , — непрерывные функции в области W , которую ограничивает замкнутая поверхность σ , то при интегрировании по внешней стороне поверхности в силе равенство

Пример 3. Вычислить поверхностный интеграл второго рода

где σ — внешняя сторона поверхности конуса, образованного поверхностью и плоскостью z = 2 .

Интегрирование по поверхности цилиндра

Решение. Данная поверхность является поверхностью конуса с радиусом R = 2 и высотой h = 2 . Это замкнутая поверхность, поэтому можно использовать формулу Остроградского. Так как P = 3x , Q = 4y , R = −z , то частные производные , , .

Переходим к тройному интегралу, который и решаем:

Видео:Кратные интегралы | Высшая математика на пальцах | Борис Трушин |Скачать

Кратные интегралы | Высшая математика на пальцах | Борис Трушин |

Больше примеров на вычисление поверхностных интегралов

Пример 4. Вычислить поверхностный интеграл первого рода

где σ — боковая поверхность конуса при .

Интегрирование по поверхности цилиндра

Решение. Так как частные производные , , то

Сводим данный поверхностный интеграл к двойному:

Проекцией поверхности на плоскость xOy является круг с центром в начале координат и радиусом R = 2 , поэтому при вычислении двойного интеграла перейдём к полярной системе координат. Для этого сделаем замену переменных:

Читайте также: Xe52370hm цилиндр аппарели размеры

Получаем следующий интеграл, который окончательно и решаем:

Пример 5. Вычислить поверхностный интеграл второго рода

где σ — верхняя часть треугольника, образованного пересечением плоскости с координатными плоскостями.

Интегрирование по поверхности цилиндра

Решение. Данный поверхностный интеграл разделим на сумму двух интегралов

Чтобы вычислить интеграл I 1 , построим проекцию поверхности σ на плоскость yOz. Проекцией является треугольник OCB , который на плоскости yOz ограничивают прямые или , y = 0 и z = 0 . Из уравнения плоскости выводится . Поэтому можем вычислить интеграл I 1 :

Чтобы вычислить интеграл I 2 , построим проекцию поверхности σ на плоскость zOx. Проекцией является треугольник AOC , который ограничивают прямые или , x = 0 и z = 0 . Вычисляем:

Складываем два полученных интеграла и окончательно получаем данный поверхностный интеграл:

Пример 6. Вычислить поверхностный интеграл второго рода

где σ — внешняя поверхность пирамиды, образованной плоскостью и координатными плоскостями.

Интегрирование по поверхности цилиндра

Решение. Данный поверхностный интеграл вычислим двумя способами

1) интегрируя по каждой грани пирамиды;

2) используя формулу Остроградского.

1) Вычисление интегрированием по каждой грани пирамиды.

а) Вычислим интеграл по треугольнику ABC . Для этого разделим интеграл на сумму трёх интегралов, которые отдельно решим:

б) Вычислим поверхностный интеграл по треугольнику AOB , который находится в плоскости z = 0 . Тогда dz = 0 и, учитывая, что нормальный вектор плоскости образует с осью Oz тупой угол, получаем

в) Треугольник AOC находится в плоскости y = 0 , таким образом, dy = 0 и (нормальный вектор плоскости образует с осью Oy тупой угол) получаем

г) Осталось вычислить поверхностный интеграл по треугольнику CBO находится в плоскости x = 0 , таким образом, dx = 0 и получаем

В результате получаем данный поверхностный интеграл второго рода:

2) Используя формулу Остроградского, от поверхностного интеграла по замкнутой поверхности перейдём к тройному интегралу, где W — область, ограниченная поверхностью σ . Так как P = xz , Q = 1 , R = 2y , то частные производные , , .

Получаем следующее решение данного поверхностного интеграла:

В последнем примере вернёмся к вычислению поверхностного интеграла первого рода.

Пример 7. Вычислить площадь поверхности параболоида во внутренней части сферы .

Интегрирование по поверхности цилиндра

Решение. Определим, при каком значении z данные поверхности пересекаются:

Значение −3 не подходит, поэтому остаётся только z = 1 .

Обозначим через C часть поверхности данного параболоида во внутреней стороне сферы. Проекция поверхности C (обозначим её D ) на плоскость xOy является кругом с центром в начале координат и радиусом √2 , так как при z = 1 получаем уравнение окружности . Решаем поверхностный интеграл первого рода:

Проекцией поверхности на плоскость xOy является круг, поэтому при вычислении двойного интеграла перейдём к полярной системе координат. Для этого сделаем замену переменных:

Получаем окончательное решение данного поверхностного интеграла:

💡 Видео

Как использовать интеграл в обычной жизни. Математик МГУ и Савватеев #shortsСкачать

Как использовать интеграл в обычной жизни. Математик МГУ и Савватеев #shorts

Двойной интеграл / Как находить двойной интеграл через повторный (двукратный) / Два способаСкачать

Двойной интеграл / Как находить двойной интеграл через повторный (двукратный) / Два способа

Демидович №4442: поток вектора через цилиндрСкачать

Демидович №4442: поток вектора через цилиндр

Математика без ху!ни. Двойной интеграл, вычисление двумя способами.Скачать

Математика без ху!ни. Двойной интеграл, вычисление двумя способами.

Определенный интеграл. Шпаргалка для первокурсника. Высшая математикаСкачать

Определенный интеграл. Шпаргалка для первокурсника. Высшая математика

Изменение порядка интегрирования в повторном интегралеСкачать

Изменение порядка интегрирования в повторном интеграле

Математика без ху!ни. Двойные интегралы. Часть1. Как вычислять.Скачать

Математика без ху!ни. Двойные интегралы. Часть1. Как вычислять.

ТФКП. Интегральная формула Коши. Примеры решений типовых задач. Решение контурных интегралов.Скачать

ТФКП. Интегральная формула Коши. Примеры решений типовых задач. Решение контурных интегралов.

Цилиндрическая система координат(ЦСК).Тройной интегралСкачать

Цилиндрическая система координат(ЦСК).Тройной интеграл

Объем через двойной интегралСкачать

Объем через двойной интеграл

11 класс, 33 урок, Вычисление объемов тел с помощью определённого интегралаСкачать

11 класс, 33 урок, Вычисление объемов тел с помощью определённого интеграла

Математика без Ху!ни. Определенные интегралы, часть 1.Скачать

Математика без Ху!ни. Определенные интегралы, часть 1.
Поделиться или сохранить к себе:
Технарь знаток