Измерение объема цилиндра в см3

Измерение объема цилиндра в см3

Авто помощник

Найти чему равен объем цилиндра (V) можно зная (либо-либо):

  • радиус r и высоту h цилиндра
  • диаметр d и высоту h цилиндра
  • площадь основания So и высоту h цилиндра
  • площадь боковой поверхности Sb и высоту h цилиндра

Подставьте значения в соответствующие поля и получите результат.

Содержание
  1. Зная радиус r и высоту h
  2. Формула
  3. Пример
  4. Зная диаметр d и высоту h
  5. Формула
  6. Пример
  7. Зная площадь основания So и высоту h
  8. Формула
  9. Пример
  10. Зная площадь боковой поверхности Sb и высоту h
  11. Формула
  12. Пример
  13. Объем цилиндра
  14. Смотрите также
  15. Калькулятор объема цилиндра в м3
  16. Объем цилиндра по высоте и радиусу
  17. Объём цилиндра через площадь основания и высоту
  18. Где применяется программа
  19. Как найти объем цилиндра: формула через диаметр и высоту
  20. Объем цилиндра
  21. Объем цилиндра формула (через радиус основания и высоту)
  22. Зная радиус r и высоту h
  23. Формула
  24. Пример
  25. Зная диаметр d и высоту h
  26. Формула
  27. Пример
  28. Формула вычисления объема цилиндра
  29. Введите радиус основания и высоту цилиндра
  30. Примеры задач
  31. Поэтапный расчет объема картонной коробки
  32. Подсчет объема коробки в литрах
  33. Объем цилиндрической полости
  34. Объем прямого цилиндра
  35. Объем цилиндра через площадь основания и высоту цилиндра
  36. Поверхности цилиндра
  37. Сечения цилиндра
  38. Как рассчитать объем цилиндра с помощью калькулятора
  39. 🌟 Видео

Зная радиус r и высоту h

Чему равен объем цилиндра V если известны его радиус r и высота h?

Формула

Пример

Если цилиндр имеет высоту h = 8 см, а его радиус r = 2 см, то:

V = 3.14156 ⋅ 2 2 ⋅ 8 = 3.14156 ⋅ 32 = 100.53 см 3

Зная диаметр d и высоту h

Чему равен объем цилиндра V если известны его диаметр d и высота h?

Формула

Пример

Если цилиндр имеет высоту h = 5 см, а его диаметр d = 1 см, то:

V = 3.14156 ⋅ ( 1 /2) 2 ⋅ 5 = 3.14156 ⋅ 1.25 ≈ 3.927 см 3

Зная площадь основания So и высоту h

Чему равен объем цилиндра V если известны его площадь основания So и высота h?

Формула

Пример

Если цилиндр имеет высоту h = 10 см, а площадь его основания So = 5 см 2 , то:

Зная площадь боковой поверхности Sb и высоту h

Чему равен объем цилиндра V если известны его площадь боковой поверхности Sb и высота h?

Формула

Пример

Если цилиндр имеет высоту h = 5 см, а площадь его боковой поверхности Sb = 30 см 2 , то:

V = 30 2 / 4 ⋅ 3.14⋅ 5 = 900 /62.8 = 14.33 см 3

Видео:11 класс. Геометрия. Объем цилиндраСкачать

11 класс. Геометрия. Объем цилиндра

Объем цилиндра

Измерение объема цилиндра в см3

Цилиндр – это геометрическое тело, которое имеет цилиндрическую поверхность, называемое еще как боковая поверхность цилиндра и имеет две поверхности, которые носят название оснований цилиндра. Круговым цилиндр называют, если у него в основании лежит круг.
Если вам необходимо вычислить объем цилиндра, то прежде, чем начать его вычисление отставьте прочь калькуляторы и свои методы решения. Ведь теперь у вас есть более легкий способ решить такую задачу, а именно наш онлайн калькулятор, который сэкономит ваше время и лишит возможности ошибиться. Все что от вас требуется это ввести несколько значений. Причем мы предлагаем два способа решения с любым из неизвестных.
Первый способ наш онлайн калькулятор вычисляет по формуле: , а второй по формуле
Где S – это площадь основания, h – это высота цилиндра, число пи равное 3.14159, а r— это радиус цилиндра.

Смотрите также

Спасибо, очень полезным оказался

Спасибо, очень удобный калькулятор. Вспомнила формулу вычисления объёма. Невозможно держать в голове всю школьную программу. Пользуешься только необходимыми вычислениями, которые нужны для моей профессии.

А в каких единицах измерения, в бананах или коровах? Услугами данного калькулятора пользуются не профессора! Бесполезно потраченное время!

Оксана, результат у тебя, и таких как ты, получится в кубических курах. Потому, что у вас мозги куриные!

В школу ходить надо было.
Если измерение проводится в см, то и получаете см возведённые в куб.

Учитель не до конца вам объяснил или вы не усвоили, что в геометрии как правило объем измеряется в кубах, соответственно:

Читайте также: Как определить объем цилиндра мопеда альфа

— Если вводите в бананах, то результат будет в бананах кубических,
— Если в сантиметрах, то результат будет в сантиметрах кубических (см³).
и т.д.

Слушайте учителей, образовывайтесь, заставляйте свой мозг работать.

Не нужно быть профессором чтобы воспользоваться этим калькулятором
Разницы нету метры, сантимеры, миллиметры он вам выдаёт куб того что вы ввели.

Видео:Цилиндр - расчёт площади, объёма.Скачать

Цилиндр - расчёт площади, объёма.

Калькулятор объема цилиндра в м3

Цилиндр – это объемное тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, которые ее пересекают. Цилиндр (от греческого «kulindros» — ролик, каток) относится к основным геометрическим фигурам. В элементарных математических трактовках, он определяется как трехмерное тело. Объем цилиндра – один из базовых параметров, который необходимо уметь вычислять каждому человеку. Формула применяется во многих сферах промышленности, а также в строительстве, архитектуре, механике, программировании.

Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Объем цилиндра по высоте и радиусу

Измерение объема цилиндра в см3

Узнать объем полой фигуры можно моментально, воспользовавшись удобной онлайн-программой. Сервис позволяет за секунды вычислить параметры тела и получить результаты в кубических сантиметрах, метрах, литрах. Расчет производится по двум математическим формулам:

    По высоте и радиусу: V = S х h.

Где V — объем, S — площадь, h — высота. Чтобы рассчитать объем необходимо площадь основания тела умножить на h. Следовательно, для этого необходимо знать две переменные.

Объём по площади основания и высоте: V = ∏ х R 2 х h

R – радиус, возведенный в квадрат. От первой формулы, расчет отличается тем, что сначала необходимо найти значение радиуса. Для этого диаметр делится на 2 или применяется формула S/2 х ∏ х H. ∏ — константа 3,14 (отношение длины окружности к диаметру).

Видео:Объём цилиндраСкачать

Объём цилиндра

Объём цилиндра через площадь основания и высоту

Измерение объема цилиндра в см3

Программа позволяет определить объем тела по обеим формулам. Для этого необходимо только подставить цифры в соответствующие строки и нажать кнопку рассчитать. Пошаговая инструкция вычисления базовых показателей фигуры на калькуляторе по высоте и радиусу:

  • в графе «h» ввести длину заданной фигуры, рядом выбрать метрику – в миллиметрах, сантиметрах, метрах;
  • в строке «r» ввести радиус тела и выбрать меру длины (мм, см, м);
  • в графе «Результат» определить, в чем будет выведен V – кубах, литрах.

Например, длина фигуры составляет 1,6 метра, радиус 25 сантиметров. Объем равен 314.2 литров, 314200 куб. см или 0.314 куб. м. Результат выводится моментально, с точностью до тысячной. Правильность вычисления зависит только от достоверности исходных данных.

Где применяется программа

Сервис разработана для всех пользователей, чья профессиональная деятельность предполагает решение математических задач. Калькулятор будет полезен школьникам 5-9 классов, учащимся 11 классов в подготовительном процессе к ЕГЭ и контрольным срезам, а также родителям для проверки правильности решения задач.

С помощью сервиса можно решить типичные тестовые задания школьной программы, подставляя известные значения и не забывая выставлять метрические параметры (в кубических сантиметрах, кубометрах, миллиметрах, литрах). Например:

    Дан цилиндр, с площадью основания 58,3 см 2 и высотой 7 см. Чтобы посчитать V следует воспользоваться расчетом через площадь и высоту.

Решение: V = 58,3 см 2 х 7 см = 408.1 см³ или 0.408 л.

Вычисление: перед использованием программы следует определить радиус основания – 16см/2 = 8 см. Затем значения подставить в нужные поля. Расчет производится на основании формулы V = 3,14 х 8 2 х 11 см = 2211.968 см³.

Следует учитывать, что параметры полого горизонтального, наклонного, косого, кругового, равностороннего цилиндров вычисляются с использованием дополнительных формул.

Видео:11 класс, 32 урок, Объем цилиндраСкачать

11 класс, 32 урок, Объем цилиндра

Как найти объем цилиндра: формула через диаметр и высоту

Видео:Объем цилиндраСкачать

Объем цилиндра

Объем цилиндра

Измерение объема цилиндра в см3

Объем цилиндра равен произведению площади его основания на высоту.

Читайте также: Пыльник рабочего цилиндра сцепления ваз 2106

Видео:Объём цилиндраСкачать

Объём цилиндра

Объем цилиндра формула (через радиус основания и высоту)

r — радиус основания цилиндра,

Если внимательно посмотреть на эту формулу, то можно заметить, что

— это формула площади круга, а в нашем случае — площадь основания. Поэтому формулу объема цилиндра можно записать через площадь основания и высоту:

Зная радиус r и высоту h

Чему равен объем цилиндра V если известны его радиус r и высота h?

Формула

Пример

Если цилиндр имеет высоту h = 8 см, а его радиус r = 2 см, то:

V = 3.14156 ⋅ 2 2 ⋅ 8 = 3.14156 ⋅ 32 = 100.53 см 3

Зная диаметр d и высоту h

Чему равен объем цилиндра V если известны его диаметр d и высота h?

Формула

Пример

Если цилиндр имеет высоту h = 5 см, а его диаметр d = 1 см, то:

V = 3.14156 ⋅ ( 1 /2) 2 ⋅ 5 = 3.14156 ⋅ 1.25 ≈ 3.927 см 3

Видео:Сколько в бочке литров? Посчитаем.Скачать

Сколько в бочке литров? Посчитаем.

Формула вычисления объема цилиндра

1. Через площадь основания и высоту

Объем (V) цилиндра равняется произведению его высоты и площади основания.

Измерение объема цилиндра в см3

2. Через радиус основания и высоту

Как мы знаем, в качестве оснований цилиндра (равны между собой) выступает круг, площадь которого вычисляется так: S = π ⋅ R 2 . Следовательно, формулу для вычисления объема цилиндра можно представить в виде:

V = π ⋅ R 2 ⋅ H

Примечание: в расчетах значение числа π округляется до 3,14.

3. Через диаметр основания и высоту

Как нам известно, диаметр круга равняется двум его радиусам: d = 2R. А значит, вычислить объем цилиндра можно следующим образом:

V = π ⋅ (d/2) 2 ⋅ H

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Введите радиус основания и высоту цилиндра

Цилиндр – геометрическое тело, которое получается при вращении прямоугольника вокруг его стороны. Также, цилиндр представляет собой тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Эта поверхность образуется при движении прямой параллельно самой себе. При этом выделенная точка прямой перемещается вдоль определенной плоской кривой (направляющая). Данная прямая называется образующей цилиндрической поверхности.

Измерение объема цилиндра в см3

, где R – радиус оснований, h – высота цилиндра

Видео:Объем цилиндра.Скачать

Объем цилиндра.

Примеры задач

Задание 1
Найдите объем цилиндра, если дана площадь его основания – 78,5 см 2 , а также, высота – 10 см.

Решение:
Применим первую формулу, подставив в нее известные значения:
V = 78,5 см 2 ⋅ 10 см = 785 см 3 .

Задание 2
Высота цилиндра равна 6 см, а его диаметр – 8 см. Найдите объем фигуры.

Решение:
Воспользовавшись третьей формулой, в которой участвует диаметр, получаем:
V = 3,14 ⋅ (8/2 см) 2 ⋅ 6 см = 301,44 см 3 .

Видео:Объем цилиндра.Скачать

Объем цилиндра.

Поэтапный расчет объема картонной коробки

    Измерить длину а и ширину b, если дно коробки квадратное, то а=b; Измерить высоту h как расстояние от нижнего до верхнего клапана коробки.

Сначала нужно рассчитать внутренний объем коробки, необходимый для размещения груза. Габаритные размеры груза должны быть на 5–10 мм меньше, чем внутренние размеры гофроупаковки.

V=a*b*h
где a – длина основания (м), b – ширина основания (м),
h – высота коробки (м).

V=S*h
где S — площадь основания коробки, а h — ее высота.

Объем, занимаемый заготовкой (коробкой) (с учетом толщины стенок) рассчитывается для правильного размещения внутри транспортного средства или хранения на складе.
Формула для расчета занимаемого объема:

V=Площадь (S) * толщину листа

*как рассчитать площадь (S) картонной коробки — в этой статье

Тип:Профиль:Толщина (мм):
Трехслойный гофрокартонB3
Трехслойный гофрокартонC3,7
Трехслойный гофрокартонE1,6
Пятислойный гофрокартонBC7
Пятислойный гофрокартонBE4

Измерение объема цилиндра в см3

Перемножив полученные значения, получим объем коробки в кубических метрах. Чтобы получить результат в литрах необходимо полученное значение в м 3 умножить на 1000.

Видео:Что такое объем двигателя? Лекция о том, от чего зависит и как измеряется объем двигателя мопедаСкачать

Что такое объем двигателя? Лекция о том, от чего зависит и как измеряется объем двигателя мопеда

Подсчет объема коробки в литрах

При транспортировке мелких или сыпучих товаров их также пакуют в ящики. Учитывая, что такие предметы и материалы занимают весь объем тары, нужно знать их количество в литрах. Если Вы интересуетесь, как посчитать объем короба в литрах, определяйте литраж следующим образом:

находим кубатуру V=a*b*h =0,3*0,25*0,15=0,0112 м 3 ;

зная равенство: 1 м 3 = 1000 л, переводим полученное значение в литры: V=0,0112 *1000=1,2 л.

Читайте также: Ваз 2106 тосол в цилиндре

Видео:Ученик помещал цилиндр объемом V = 10 см3, не удерживая его, в различные жидкости - №23189Скачать

Ученик помещал цилиндр объемом V = 10 см3, не удерживая его, в различные жидкости - №23189

Объем цилиндрической полости

Объем полости в виде цилиндра равен объему цилиндра, который извлечен из данной полости для ее образования. То есть для вычисления цилиндрической полости можно воспользоваться формулами и калькулятором для расчета простого правильного цилиндра в зависимости от известных исходных данных.

На картинке продемонстрирована цилиндрическая полость, образованная в теле путем извлечения из него цилиндра. Объем извлеченного цилиндра и объем образованной полости равны.

Нужно отметить один важный момент. Несмотря на равенство объемов извлеченного цилиндра и образованной полости, площади поверхностей данных объектов будут отличаться, так как у образованной цилиндрической полости отсутствует верхняя поверхность. То есть суммарная площадь поверхности образованной цилиндрической полости будет меньше суммарной площади извлеченного цилиндра на одну площадь основания цилиндра.

Измерение объема цилиндра в см3

Цилиндр может быть правильным или наклонным

Правильный цилиндр – это цилиндр, где угол между образующими боковой поверхности и основанием цилиндра равен 90 градусов.

Неправильный или наклонный цилиндр – это цилиндр, где угол между образующими боковой поверхности и основанием цилиндра отличается от 90 градусов.

Рассмотрим правильный цилиндр.

Цилиндр – это тело, образованное вращением прямоугольника вокруг одной из его сторон. Тело цилиндра ограничено двумя кругами, называемыми основанием цилиндра и боковой цилиндрической поверхностью, которая в развертке представляет собой прямоугольник

Цилиндр можно так же описать как тело, состоящее из двух равных кругов, не лежащих в одной плоскости и параллельных между собой, и отрезков, соединяющих все точки одной окружности, с соответствующими точками другой окружности. Данные отрезки называются образующими цилиндра.

Радиус основания цилиндра, является радиусом цилиндра.

Ось цилиндра – это прямая, соединяющая центра оснований цилиндра.

Высота цилиндра – это перпендикуляр, опущенный от одного основания цилиндра к другому.

Видео:ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРАСкачать

ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРА

Объем прямого цилиндра

Цилиндр – это геометрическое тело, которое сформировано вращением прямоугольника на оси, совпадающей с одним из его сторон. Слово «цилиндр» происходит от греческого слова «kylindros».

Объем цилиндра через площадь основания и высоту цилиндра

Объем цилиндра равен произведению площади основания цилиндра на его высоту.

где:
V – объем цилиндра
H – высота цилиндра
S – площадь цилиндра

Видео:Задача про ЦИЛИНДР / Как найти объем детали? / Профиль ЕГЭСкачать

Задача про ЦИЛИНДР / Как найти объем детали? / Профиль ЕГЭ

Поверхности цилиндра

Наружную поверхность цилиндра можно условно разделить на три отдельные поверхности: верхняя, нижняя и боковая.

Верхняя и нижняя поверхности цилиндра имеют форму круга и равны между собой.

Боковая поверхность цилиндра имеет форму прямоугольника. Чтобы это наглядно представить, возьмем боковую наружную поверхность цилиндра и мысленно сделаем вертикальный разрез по образующей цилиндра. Далее развернем поверхность на плоскость. В результате увидим, что боковая поверхность имеет форму прямоугольника (см. на картинке).

Видео:Объем цилиндра. Практическая часть. 11 класс.Скачать

Объем цилиндра. Практическая часть. 11 класс.

Сечения цилиндра

Измерение объема цилиндра в см3

Измерение объема цилиндра в см3

При сечении цилиндра плоскостью, проходящей через оба основания цилиндра под углом в 90 градусов, всегда получатся прямоугольная фигура

Измерение объема цилиндра в см3

При сечении цилиндра плоскостью, проходящей через оба основания цилиндра под углом отличным от 90 градусов, получатся фигура, похожая на прямоугольник , но две боковые стороны которого будут являться кривыми линиями.

Измерение объема цилиндра в см3

Если секущая поверхность проходит параллельно основаниям цилиндра, то сечением будет круг

Измерение объема цилиндра в см3

Если секущая поверхность проходит через боковую поверхность, но при этом не параллельна основанию цилиндра, то в сечении получается эллипс

Измерение объема цилиндра в см3

Если секущая поверхность проходит через одно основание цилиндра и боковую поверхность, то в сечение будет фигура в виде половины эллипса

Видео:Измерение объема с помощью мензуркиСкачать

Измерение объема с помощью мензурки

Как рассчитать объем цилиндра с помощью калькулятора

Калькулятор позволяет определить объем цилиндра по одному из 3 вариантов:

  1. площадь основания и высота цилиндра;
  2. радиус основания и высота цилиндра;
  3. диаметр основания и высота цилиндра.

Выберите соответствующий шаг и введите исходные данные в соответствующие поля.

Также важно указать единицы измерения по условиям задачи.

Расчеты будут выполнены автоматически и конвертированы в основные метрические физические величины объема.

🌟 Видео

Вычисление объёма цилиндраСкачать

Вычисление объёма цилиндра

Микрометр и нутромер. Как измерить цилиндры?Скачать

Микрометр и нутромер. Как измерить цилиндры?

Как рассчитать бетонСкачать

Как рассчитать бетон
Поделиться или сохранить к себе:
Технарь знаток