Изоляторы для токоведущих шин

Какие бывают электрические изоляторы и для чего они предназначены?

Обязательным условием для передачи электрической энергии является проводниковый материал, необходимый для протекания тока. Но для исключения возможности попадания потенциала на несущие конструкции и другие элементы устанавливаются электрические изоляторы. В современной электротехнике невозможно представить себе работу каких-либо силовых устройств без изоляторов.

Видео:Станок СРШ-150М SHTOK. для комплексной обработки токоведущих шинСкачать

Станок СРШ-150М SHTOK. для комплексной обработки токоведущих шин

Что из себя представляют электрические изоляторы?

Электрические изоляторы представляют собой диэлектрический элемент электроустановки, конструктивно выполняемый из изоляционного материала и армирующих деталей. Диэлектрик предназначен для электрического отделения, а металлические конструкции позволяют зафиксировать как сам изолятор, так и проводники на нем. В качестве диэлектрического материала используется стекло, полимер или керамика.

Назначение

Электрические изоляторы предназначены для крепления шин, проводов, тралеи и прочих токоведущих элементов к корпусу электроустановки, консолям опор и прочим конструкциям. Помимо этого они изолируют проводники при прохождении через стены, позволяют отделить электроустановки друг от друга и прочие несущие функции.

В зависимости от места установки их подразделяют на внутренней и наружной. Также немаловажное значение играет класс напряжения, на который рассчитан тот или иной изолятор. Из-за чего будет отличаться его конструктивное исполнение и определенные технические характеристики, определяющие возможность их применения в тех или иных электроустановках [ 1 ].

Основные технические характеристики

В соответствии с требованиями нормативных документов, для электрических изоляторов регламентируются такие характеристики:

Изоляторы для токоведущих шин

  • Сухоразрядное напряжение — это такая величина, при которой произойдет электрический разряд в условиях сухого состояния поверхности. Перекрытие изолятора
  • Мокроразрядное напряжение – определяет такую же величину, как и предыдущий параметр, но при условии попадания дождя на поверхность. При этом рассматривается такой вариант, когда направление струй располагается под углом 45°.

Изоляторы для токоведущих шин

Рис. 2. Изолятор под дождем

При таком потоке струй под углом 45°, которые обозначены на рисунке 2 буквой А, обеспечивается максимальное обтекание поверхности Б, и, как следствие, обеспечивается минимальное сопротивление электрическому току – от 9,5 до 10,5 кОм*см. Этот параметр всегда ниже сухоразрядного.

  • Напряжение пробоя – представляет собой такую величину, при которой произойдет пробой между двумя полюсами. В зависимости от конструкции, полюса могут быть представлены стержнем и шапкой либо шиной и фланцем.
  • Механическая прочность – проверяется нагрузкой на изгиб, разрыв или срез головки. При этом конструкцию жестко закрепляют и прикладывают к ней усилие, плавно повышаемое до такого уровня высочайшего напряжения в материале, которое приводит к разрушению.
  • Термическая устойчивость – испытывается посредством попеременного нагревания и резкого охлаждения. Состоит из двух-трех циклов, в зависимости от материала и конструкции. После чего прикладывается электрический потенциал, создающий множественные разряды.

Проверка технических характеристик.

Следует отметить, что испытательные процедуры не являются обязательными для всех изоляторов, выпускаемых на заводе. Электрическим, термическим и механическим воздействиям подвергаются только 0,5% от партии. Обязательной для всех изоляторов является проверка напряжением перекрытия в течении трех минут, при котором на изоляторе возникают искровые разряды.

У подвесных изоляторов обязательно проверяется механическая характеристика. Для этого в течении минуты к нему прикладывается механическая нагрузка, которую регламентируют заводские или государственные нормы.

Такие испытания обеспечивают нормальную работу электрических изоляторов при номинальных токах и номинальных напряжениях в сети. А также, достаточный уровень надежности. Кроме этого, некоторые модели подвергаются периодической проверке в ходе эксплуатации. По результатам периодических осмотров и испытаний они могут проходить очистку, выбраковку и замену.

Видео:#3 Изоляторы шинные дистанционные SMСкачать

#3 Изоляторы шинные дистанционные SM

Типовая конструкция

Для начала разберем пример типовой конструкции на эскизе штыревого изолятора.

Изоляторы для токоведущих шин

Рис. 3. Изолятор в разрезе

Как видите на рисунке 3, в конструкции предусмотрены ребра А и Б. Которые позволяют увеличить электрическую прочность за счет удлинения пути для тока утечки по поверхности. В связи с различными углами уклона ребер обеспечивается возможность защиты от выпадающих осадков. Так ребра А имеют меньший уклон, поэтому они наиболее актуальны для твердых осадков – снега, грязи и т.д. Потому что влага может подлизываться под низ и значительно сокращать величину разрядного напряжения.

В отличии от них, юбки Б позволяют полностью исключить возможность попадания влаги при дождливой погоде. Это обеспечивает постоянный запас сопротивления, которое и гарантирует величину напряжения пробоя. Помимо этого, юбки Б не боятся намерзания гололеда и могут обеспечивать нормальную работу высоковольтных линий в случае сложной метеорологической ситуации.

Для крепления головки стержня предусмотрена резьба В, которая позволяет закрепить конструкцию на консоли или армирующих крюках. В верхней части находится желоб Г для фиксации провода. Дополнительно провод увязывается проволокой для более надежного крепления воздушных ЛЭП.

Изоляторы для токоведущих шин

Рис. 4. Конструкция проходного изолятора

Проходной изолятор имеет немного иную конструкцию, так как его задача не только изолировать токоведущую шину от стены, но и обеспечить нормальное протекание тока внутри самого изолятора. Посмотрите, шина обжимается с обеих сторон алюминиевой крышкой для ее надежного закрепления снаружи. Внутри механическое крепление осуществляется за счет герметика, который помимо этого предотвращает попадание загрязнителей и агрессивных веществ. Также для удобства крепления проводов или шин может устанавливаться дополнительный лепесток на самой крышке, как показано на рисунке 4.

Читайте также: Расчет допустимого тока для алюминиевых шин

Защитная оболочка из кремнийорганической резины препятствует электрическому пробою по поверхности от шины до фланца. Изоляция от пробоя внутренних элементов выполняется посредством стеклопластиковой трубы, которая помещается внутрь ребристой рубашки. Более детальную информацию о параметрах можно почерпнуть из обозначения модели.

Видео:ERKO SH 300: Станок для обработки токопроводящих шинСкачать

ERKO SH 300: Станок для обработки токопроводящих шин

Обозначения изоляторов

В маркировке каждого изделия содержится информация о его типе, материале и прочих характеристиках. Посмотрите пример маркировки для изолятора НСПКр 120 – 3/0,6 – Б.

  • Первая буква Н указывает на назначение модели, в данном случае Н — натяжной. Также может быть К – консольный, Ф – фиксаторный, П – подвесной.
  • С – обозначает, что это стержневой изолятор.
  • П – изоляционный материал, в данном случае П – полимер.
  • К – наружное покрытие, в данном случае кремнийорганическая резина.
  • р – индекс, обозначающий, что защитная оболочка ребристая цельнолитая.
  • 120 – показатель нормированного разрушающего усилия в кН.
  • 3 – класс напряжения проводов ВЛ, для которого применяется.
  • 0,6 – обозначает длину пути тока утечки, измеряемую в метрах.
  • Б — обозначает вид зацепления.

Видео:Провода, токопровод, шиныСкачать

Провода, токопровод, шины

Классификация

Для обеспечения надежного электроснабжения и соблюдения максимального уровня безопасности в каждом конкретном случае в электроустановках должны применяться изоляторы соответствующего типа и конструкции. В зависимости от критерия выделяют несколько параметров их классификации.

По назначению

В зависимости от назначения выделяют такие виды изоляторов:

Изоляторы для токоведущих шин

  • Стационарные – применяют для механического крепления токоведущих стержней или ошиновки в распределительных устройствах. В зависимости от назначения стационарные изоляторы дополнительно подразделяются на опорные и проходные. Так опорные изоляторы выступают в роли основания, на которое крепятся шины в ячейках или несущих конструкциях. Проходные изоляторы позволяют провести токоведущий элемент сквозь стену или перекрытие помещения.
  • Аппаратные – имеют схожее назначение со стационарными, но применительно к каким-либо аппаратам. К примеру, аппаратные изоляторы нашли широкое применение в выпрямительных установках, силовых приборах, комплектных подстанциях, установках аппаратов высокого напряжения и прочих агрегатах. Посмотрите на рисунок 5, здесь представлен пример его использования, где он имеет обозначение АИ. Рис. 5. Пример аппаратных изоляторов
  • Линейные – используются для наружной установки под высоковольтные линии или ошиновку открытых распредустройств. Отличительной чертой линейных изоляторов является наличие широких ребер или юбок, предназначенных для увеличения пути поверхностного пробоя в случае выпадения осадков.

По материалу исполнения

В зависимости от применяемого диэлектрика выделяют такие виды изоляторов:

  • С фарфоровым корпусом – отличаются высокой механической прочностью на сжатие, но боятся динамических воздействий. Для предотвращения появления проводящих каналов, из-за оседания пыли и грязи на поверхности, керамический материал покрывается глазурью.
  • Полимерные изоляторы – подразделяются на модели, которые имеют упругую деформацию и монолитные. Отличаются куда большим удельным сопротивлением материала, чем фарфоровые. Но мягкая поверхность в большей мере подвержена загрязнению, чем покрытый глазурью фарфор. Помимо этого из-за воздействия ультрафиолета полимер разрушается и утрачивает свойства, поэтому их применяют для внутренней установки.
  • Стеклянные электрические изоляторы – отличаются не такой высокой прочностью, подвержены сколам при динамических воздействиях. Но в отличии от других материалов не подвержены воздействию агрессивных реагентов. Обладают меньшим весом и более просты в обслуживании, чем фарфоровые.

По способу крепления на опоре

В зависимости от способа крепления бывают:

Изоляторы для токоведущих шин

Классификация по способу крепления

  • Штыревого типа (а) – крепятся посредством металлической арматуры и выступают в роли опоры воздушных ЛЭП, откуда и возникло название опорно-штыревые изоляторы.
  • Подвесные (б) – выполняются тарельчатыми изоляторами, которые собираются в гирлянды, в зависимости от класса напряжения присоединенных к ним электрических аппаратов.
  • Стержневые (в) – имеют форму сплошного стержня, который устанавливается в качестве опорного или подвешивается за элементы арматуры в качестве натяжного. Опорно-стержневые изоляторы устанавливается в распредустройствах для изоляции шин. На их краях посредством чугунных крыльев крепятся токоведущие части.

Видео:Станок СРШ-200 SHTOK. для комплексной обработки токоведущих шинСкачать

Станок СРШ-200 SHTOK. для комплексной обработки токоведущих шин

Видео в дополнение темы

Обзор электрических изоляторов типа «ПС»:

Шинные конструкции распределительных устройств

Изоляторы для токоведущих шин

Сборные шины распределительных устройств представляют собой неизолированные, сравнительно массивные токоведущие проводники прямоугольного, круглого или профильного сечения. В пределах помещения закрытого РУ все ответвления от шин и присоединения к аппаратам выполняются также голыми проводниками, образующими ошиновку.

Сборные шины являются центральной и наиболее ответственной частью РУ, так как к ним поступает электроэнергия от всех генераторов станции (или трансформаторов подстанции) и к ним же присоединяются все отходящие линии.

Читайте также: Шины зимние диски для прадо 150

В закрытых РУ до 35 кв включительно сборные шины выполняют из алюминиевых полос прямоугольного сечения. Стальные шины применяют в электроустановках малой мощности при токах нагрузки не свыше 300—400 А.

Следует отметить, что прямоугольные (плоские) проводники более экономичны, чем круглые. При равной площади сечения у прямоугольной шины боковая поверхность охлаждения больше, чем у круглой.

В помещении РУ шины монтируются на специальных шинных полках или каркасах аппаратных ячеек. Шины укладываются на опорных фарфоровых изоляторах на ребро или плашмя и закрепляются при помощи шинодержателей.

Существует много различных способов установки шин. Каждому из них присущи свои преимущества и недостатки.

Условия охлаждения шин, установленных на ребро, лучше, чем расположенных плашмя. В первом случае коэффициент теплоотдачи на 10—15% выше, чем во втором, и это учитывается при определении допускаемое токовой нагрузки (ПУЭ). Шины, обращенные к соседним своей узкой стороной (ребром), обладают большей механической устойчивостью.

Для возможности перемещения шин вдоль их осп при температурном удлинении шина в середине участка крепится жестко, а в пролете — свободно. Кроме того, при большой длине шин устанавливают компенсаторы, которые принимают на себя температурные удлинения. Две шинные полосы соединяются между собой при помощи гибкого пакета тонких медных или алюминиевых лент. Концы шинных полос имеют на опорном изоляторе не жесткое, а скользящее крепление через продольные овальные отверстия.

Для исключения температурных напряжений шины в некоторых случаях присоединяются к неподвижным аппаратам (зажимам) при помощи гибких пакетов, которые наращиваются на концах жестких шин.

Наибольшие применяемые размеры однополосных медных и алюминиевых шин составляют 120х10 мм.

При больших токовых нагрузках (для медных шин более 2650 А и для алюминиевых — 2070 А) применяют многополосные шины — пакеты из двух и реже из трех полос на фазу; нормальное расстояние между полосами в пакете принимают равным толщине одной полосы (b).

Близость полос одного и того же пакета друг к другу вызывает неравное распределение тока между ними: большая нагрузка приходится на крайние полосы пакета и меньшая — на средние. Например, в трехполосном пакете в крайних полосах протекает по 40%, а в средней — только 20% полного тока фазы. Это явление, аналогичное явлению поверхностного эффекта в одном проводнике, делает нецелесообразным применение более трех полос шин при переменном токе.

При рабочих токах, превышающих допустимые для двухполосных шин, наиболее целесообразно применять шины корытного профиля (швеллеры), дающие возможность лучше использовать проводниковый материал и получить высокую механическую прочность.

В настоящее время в мощных установках применяют пакет из двух швеллеров на фазу, который приближается по форме и kп к полому квадрату. Наибольший размер швеллера со стенкой 250 мм и толщиной 12,5 мм при двух швеллерах в пакете позволяет передавать ток 12 500 А для меди и 10 800 А — для алюминия.

Шины и вся ошиновка закрытого РУ окрашиваются эмалевыми красками в опознавательные цвета, что позволяет оперативному персоналу легко распознавать токоведущие части, относящиеся к определенным фазам и цепям.

Кроме того, окраска защищает шины от окисления и улучшает теплоотдачу с их поверхности. Увеличение допустимого тока от окраски шин составляет 15—17% для медных и 25—28% для алюминиевых шин.

Для шин различных фаз применяют следующие цвета окраски: трехфазный ток: фаза А — желтый, фаза В — зеленый, фаза С— красный; нулевые шины: при незаземленной нейтрали — белый, при заземленной нейтрали, а также заземляющие проводники — черный; постоянный ток: положительная шина — красный, отрицательная шина — синий.

Ошиновка открытых РУ может выполняться гибкими проводами или жесткими шинами. При напряжениях 35, 110 кв и выше для повышения коронного напряжения и снижения потерь на корону применяют провода только круглого сечения.

В большинстве открытых РУ ошиновка выполняется из многопроволочных сталеалюминиевых проводов такой же конструкции, как и на линиях электропередач.

Медные провода для ошиновки применяются лишь в тех случаях, когда открытое РУ расположено вблизи (около 1,5 км) берегов соленых морей или химических заводов, активные испарения которых и унос могут вызвать быструю коррозию алюминиевых проводов. В отдельных случаях в открытых РУ применяют жесткую ошиновку, которая выполняется из стальных или алюминиевых труб, укрепляемых на опорных изоляторах.

Сечения шин и других токоведущих проводников могут быть рассчитаны исходя из величины рабочих токов и допускаемых температур на основании условий нагрева.

Что касается шин, применяемых в РУ, то сечения их стандартизованы и для них составлены таблицы допустимых длительных токовых нагрузок. Поэтому в практических условиях нет необходимости вести расчет по формулам, а достаточно произвести выбор по таблицам.

Читайте также: Новинки шины низкого давления

Таблицы допустимых длительных токовых нагрузок на голые шины и провода рассчитаны и проверены экспериментально; при их составлении принята допустимая температура нагрева 70° С при температуре окружающего воздуха +25° С.

Такие таблицы для стандартных сечений шин и проводов из основных проводниковых материалов и определенных профилей (прямоугольный, трубчатый, швеллер, полый квадрат и др.) приведены в ПУЭ и справочниках.

Для шин прямоугольного сечения табличные токовые нагрузки составлены при установке их на ребро; поэтому при расположении шин плашмя нагрузки должны быть уменьшены на 5% для шин шириною полос до 60 мм и на 8% для шин шириною полос более 60 мм. В тех случаях, когда средняя температура окружающего воздуха отличается от стандартной (+25°С), допускаемые нагрузки шин, полученные из таблиц, должны быть пересчитаны по следующей приближенной формуле:

Изоляторы для токоведущих шин

где IН—допускаемая нагрузка, взятая из таблиц.

Сечение проводников должно быть проверено по экономической плотности тока.

Экономическим сечением проводников или шин qЭК называют такое сечение, при котором суммарная величина ежегодных расходов, определенная по капитальным затратам и эксплуатационным расходам, оказывается наименьшей.

Экономическое сечение проводов и шин получается при делений, тока наибольшей нагрузки в нормальном режиме на электрическую плотность тока:

Изоляторы для токоведущих шин

Полученное по экономическому условию сечение округляют до ближайшего стандартного и проверяют по длительно допускаемому току нагрузки. Следует отметить, что сборные шины РУ всех напряжений по экономической плотности тока не выбирают, так как экономические сечения при больших токах получаются равными либо меньше сечений, выбранных по нагреву.

Кроме этого, шины РУ проверяют на термическую и электродинамическую устойчивость при коротких замыканиях, а при 110 кв и выше — также на коронирование.

Таким образом, проводники любого назначения должны удовлетворять требованиям предельно допустимого нагрева с учетом не только нормальных, но и аварийных режимов.

Если сечение проводника, определенное по экономическим условиям и условиям длительной нагрузки, не равно сечению, которое требуется по другим аварийным условиям (термическая и динамическая устойчивость при коротких замыканиях), то должно приниматься большее сечение, удовлетворяющее всем условиям.

Следует также отметить, что при установке шин больших сечений необходимо обеспечивать наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия для охлаждения. Это может быть достигнуто путем уменьшения числа полос в пакете и их надлежащего пространственного и взаимного расположения, рациональной конструкции пакета, применения профильных шин — корытных, полых и др.

При применении стальных шин определение величины допустимого тока производится несколько иным путем.

В стальных шинах вследствие поверхностного эффекта происходит значительное вытеснение тока к поверхности проводника глубина проникновения не превышает 1,5—1,8 мм.

Исследованиями установлено, что допустимая нагрузка стальных шин переменным током практически зависит от периметра поперечного сечения шин, а не от площади этого сечения.

На основании этих исследований принят следующий способ расчета стальных шин переменного тока:

1. Сначала определяют ток нагрузки шины (для однополосной шины не свыше 300—400 А) и находят линейную плотность тока:

Изоляторы для токоведущих шин

где Iн — ток нагрузки, А; р — периметр поперечного сечения шины, мм.

Линейная плотность тока зависит от допустимой температуры перегрева стальной шины над температурой окружающего воздуха. Эта зависимость определяется следующим выражением:

Изоляторы для токоведущих шин

Установлено, что при болтовых соединениях стальных шин величина Θ не должна превышать 40° С, а для сварных соединений она может быть повышена до 55° С.

Если принять температуру окружающего воздуха v0 — 35°, то линейная плотность тока при болтовых соединениях будет равна

Изоляторы для токоведущих шин

Изоляторы для токоведущих шин

2. По этим данным определяем величину необходимого периметра поперечного сечения шины:

Изоляторы для токоведущих шин

По периметру шины, имея сортамент шин, можно легко подобрать нужный размер стандартных стальных полос, соблюдая условие

Изоляторы для токоведущих шин

где h—высота шины, мм; b—толщина шины, мм.

Приведенный выше расчет стальных шин относится к однополосным шинам.

При больших токах нагрузки можно применить пакеты из нескольких стальных шин. В этом случае периметр поперечного сечения одной полосы шины, входящей в пакет, подбирается с соблюдением следующих условий:

Изоляторы для токоведущих шин

Изоляторы для токоведущих шин

Для упрощения расчетов можно пользоваться диаграммой зависимости периметра р поперечного сечения шины от тока нагрузки IН.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле


    🎦 Видео

    Изолятор ОФР-20-750Скачать

    Изолятор ОФР-20-750

    Гибка медной и алюминиевой шины ШГ-150 NEO (КВТ)Скачать

    Гибка медной и алюминиевой шины ШГ-150 NEO (КВТ)

    Тарелочки на проводах. Изоляторы, виды-назначение и конструкция. #изоляторы#тарелочкиСкачать

    Тарелочки на проводах. Изоляторы,  виды-назначение и конструкция. #изоляторы#тарелочки

    Шина нулевая EKF на DIN-изоляторе. РаспаковкаСкачать

    Шина нулевая EKF на DIN-изоляторе. Распаковка

    Изолятор ИОРФ-20-8,0 I УХЛ2Скачать

    Изолятор ИОРФ-20-8,0 I УХЛ2

    SATIN MATTER - Сатиновое Чернение Шин от SpaceCosmeticsСкачать

    SATIN MATTER - Сатиновое Чернение Шин от SpaceCosmetics

    ERKO 5010R: устройства для обработки, гибки, перфорации шинСкачать

    ERKO 5010R: устройства для обработки, гибки,  перфорации шин

    Шинный изолятор EKF SM-25/51 как альтернатива орешковому (тест на разрыв) RA0LKGСкачать

    Шинный изолятор EKF SM-25/51 как альтернатива орешковому (тест на разрыв) RA0LKG

    ERKO SH 400 PLC: устройства для обработки токопроводящих шинСкачать

    ERKO SH 400 PLC: устройства для обработки токопроводящих шин

    Станок для резания и гибки медных и алюминиевых шинСкачать

    Станок для резания и гибки медных и алюминиевых шин

    Изолятор ИОР 10 3,75Скачать

    Изолятор ИОР 10 3,75

    Как присоединить проводники из меди и алюминия к оцинкованной шинеСкачать

    Как присоединить проводники из меди и алюминия к оцинкованной шине

    Сборка Система наборных шинодержателей НШДСкачать

    Сборка Система наборных шинодержателей НШД

    Изолятор ИОР 10 7,5Скачать

    Изолятор ИОР 10 7,5

    Изолятор ИО 10 3,75 У3Скачать

    Изолятор ИО 10 3,75 У3
Поделиться или сохранить к себе:
Технарь знаток