Современная авиационная шина — сложная высокотехнологическая структура и один из наименее понимаемых и наиболее недооцененных элементов самолета. Авиашина — многоэлементный компонент, сконструированный из трех материалов: корд, резина, металл. В весовом соотношении шина самолета состоит на 50% из резины, на 45 % из корда и на 5% из металла.
При посадке самолета шасси испытывает колоссальные не только статические, но и и динамические нагрузки, воспринимаемые стойками и колесами. Прибавьте к этому, что при полете колеса были неподвижны, а при касании к ВПП должны быстро набрать обороты, соответствующие посадочной скорости. Таким образом, к шасси современных самолетов, предъявляются достаточно высокие и жесткие требования.
Авиационные шины и колеса в сборе могут работать под высоким давлением, чтобы нести налагаемую на них нагрузку, к ним следует относиться с той же осторожностью, что и к любому другому сосуду высокого давления. Множественные слои каркаса соединены вместе, образуя общий каркас, делая шину способной удерживать внутреннее давление.
За счет существенного уменьшения массы шин и одновременного увеличения количества выдерживаемых ими приземлений, снижаются эксплуатационные и топливные расходы. Как результат — уменьшение негативного влияния на окружающую среду за счет уменьшения выбросов CO2 в атмосферу и меньшего количества используемого сырья.
Основными наиболее нагруженными элементами шасси летательного аппарата являются амортизационные стойки и колеса (пневматики).
Амортизационные стойки служат для обеспечения максимальной плавности хода при движении по аэродрому, на разбеге и пробеге, а также гашения ударов, возникающих в момент приземления (часто используются многокамерные азото-масляные длинноходные амортизаторы, в которых функцию пружинного элемента выполняет закачанный под строго определенным давлением технический азот). На многоколесных тележках шасси тяжелых самолетов могут быть установлены также дополнительные амортизаторы — стабилизирующие демпферы. Усиленные стойки шасси способны выдержать удар о выступающие ребра бетонных плит высотой до 10 см при движении самолета с посадочной скоростью или грубую посадку.
Имеется также система раскосов, тяг и шарниров, воспринимающих реакции опорной поверхности и крепящих амортизационные стойки и колеса к крылу и фюзеляжу, которые служат одновременно механизмом уборки-выпуска.
Колеса шасси самолета поддерживают его на земле и обеспечивают средства мобильности для взлета, посадки и руления. А пневматические шины амортизируя, предохраняют самолет от ударных импульсов из-за неровностей поверхности и недостатков техники пилотирования при посадке.
Диски (барабаны) колес часто изготавливаются из сплавов на основе магния. Обычно это магниево-цинковые сплавы, которые очень трудно обрабатывать либо титановые. В настоящее время только несколько промышленных держав в мире могут производить шины для истребителей с высокими эксплуатационными характеристиками.
Сложная высокотехнологическая структура
Колеса самолета разработаны таким образом, чтобы облегчить замену шин (пневматиков). Сами диски колес обычно изготавливаются разборными, из двух половинок, которые соединяются между собой болтами. Для увеличения герметичности колес перед сборкой обе половины диска и внешние стороны покрышки обрабатываются специальным клеевым составом, и только после этого производят сборку.
На современных скоростных самолетах пневматики бескамерные и накачиваются техническим азотом (использование последнего обусловлено предотвращением конденсации газа, и последующего его замерзания на высоте, с образованием опасного льда и кроме того азот дешев и не горит). Протекторы шин шасси самолетов не имеют никакого рисунка, кроме нескольких продольных кольцевых водоотводящих канавок для уменьшения эффекта аквапланирования, а также контрольных углублений для простоты определения степени износа. Форма шины в поперечном сечении близка до круглой, для обеспечения максимального контактного пятна колеса при посадке с креном. Пневматики снабжены дисковыми или колодочными тормозами с гидравлическим, пневматическим или электрическим приводом, для маневрирования при движении по аэродрому и уменьшения длины пробега после посадки.
В целом современная авиационная шина — сложная высокотехнологическая структура, которая работает с огромными скоростями, и нагрузками при минимально возможном весе и размерах.
Авиационная шина способна выдерживать широкий диапазон условий эксплуатации. Находясь на земле, она должна поддерживать массу самолета. Во время выруливания — обеспечивать стабильный плавный ход, сопротивляясь в то же время теплообразованию, истиранию и износу. Во время взлета конструкция шины должна быть способна выдерживать не только нагрузку самолета, но и силы, создаваемые при высоких скоростях качения при разбеге. Посадка требует от шины поглощения колоссальных динамических ударных нагрузок. Все эти процессы должны выполняться стабильно, обеспечивая длительный и надежный срок службы шин.
Для этих экстремальных требований нужна достаточно сложная шина. Шина современного самолета — это композит из нескольких различных резиновых смесей (смеси натурального и синтетического каучука), текстильного материала и стали. Каждый компонент шины служит конкретной цели в реализации ее эксплуатационных характеристик. Шины самолетов очень прочные, поскольку армируются железными кордами, нейлоном, а также полимером арамид.
Требования к шинам и колесам шасси самолетов в целом достаточно жесткие и порой противоречивые
- поглощение кинетической энергии ударов при посадке и движении по неровной поверхности аэродрома с целью уменьшения перегрузок и рассеивание возможно большей части этой энергии для быстрого гашения колебаний;
- минимум массы конструкции при заданной прочности, жесткости и долговечности;
- минимум аэродинамического сопротивления в выпущенном положении;
- высокая технологичность конструкции.
Читайте также: Для маркировки автомобильных шин применяется единая система обозначений первое число
Высокое давление
Именно авиационные колеса во многом и содержат сегодня большинство новейших изобретений, воплощенных на практике. По авиационным стандартам шина должна выдерживать давление в 4 раза выше, чем то, на которое она рассчитана, так что теоретически шины могут выдержать жесткое приземление на скорости свыше 450 км/ч.
Кроме того, что самолетные шины испытывают колоссальные статические и динамические нагрузки, они подвергаются и тепловым, когда длительное время находятся в условиях низких температур, а во время посадки быстро набирают скорость около 300 км/ч (некоторые до 460 км/ч). При соприкосновении с землей, температура шины поднимается до 260°С.
Шины стабильно выдерживают разность температур и нагрузку. Они сконструированы таким образом, чтобы максимально противостоять износу и разрыву. Они выполняются многослойными с прочным нейлоновым и арамидным шнуром, расположенным под каждым слоем. Каждый слой имеет свойство выдерживать колоссальную нагрузку и давление воздуха. Корд не переплетается, а располагается одинарными слоями параллельно и удерживается вместе тонкими пленками резины, которая защищает корд из смежных слоев от перетирания друг о друга при изгибании пневматика в процессе эксплуатации.
Во время изготовления шины, слои накладываются парами таким образом, что корды смежных слоев располагаются под углом 90° друг к другу в случае перекрещивающегося (диагонального) пневматика и от борта к борту с примерным углом 90° к центральной линии шины в радиальном пневматике.
Для поглощения и распределения динамических нагрузок и защиты корпуса от ударного повреждения между корпусом и протектором располагаются два узких слоя, запрессованных в толстые резиновые прослойки. Эти специальные слои называются брекерными поясами.
Изготовители шин присваивают каждому пневматику норму слойности. Эта норма напрямую не относится к количеству слоев в шине, а является индексом прочности шины.
Проволочная намотка делается жесткой с помощью скрепления резиной всей проволоки вместе, создавая крепкое соединение. Бортовая проволока (сердечник борта) также укреплен с помощью обмотки тканевыми полосками до применения основных и наполнительных лент. Основные ленты, изготовленные из резины и располагающиеся под прорезиненными тканевыми наполнительными лентами, обеспечивают большую жесткость и меньшую резкость изменений секции борта. Они также увеличивают зону контакта.
В условиях грубого торможения, нагрев колеса, шины и тормоза может быть достаточным, чтобы вызвать разрыв шины с возможными катастрофическими последствиями для самолета. Для предотвращения внезапного разрыва на некоторых бескамерных колесах устанавливаются термосвидетели. Эти заглушки устанавливаются в барабан колеса с помощью легкоплавкого сплава, который плавится в условиях перегрева и выталкивается повышенным давлением воздуха в пневматике. Это предотвращает чрезмерное повышение давления в пневматике путем контролируемого снижения давления в нем.
Особенностью колес самолета, как и всего, что связано с авиацией, является постоянный контроль технического состояния, поэтому проверка давления в шинах производится каждый раз после приземления и перед вылетом.
Но посадки и взлеты негативно отражаются на состоянии шин, поэтому авиационные колеса в отличие от автомобильных имеют относительно небольшой срок годности, и при малейших подозрениях механиков на наличие дефектов подлежат замене.
Статические и динамические тестовые проверки
- Проверка на прочность под воздействием внутреннего гидравлического давления. Способ: на испытательное колесо монтируют шину и до грани разрыва накачивают его водой. Определенное время шина должна без разрушения выдерживать нагрузку.
- Определение давления посадки шины на обод колеса. Один из методов — копировальный. Между двух листов обычной бумаги кладут один копировальный лист. Затем эту бумажную «конструкцию» устанавливают между ребордой колеса и бортом шины. Далее шину накачивают. Когда пятка борта колеса коснется вертикальной поверхности реборды, фиксируется показатель давления посадки на обод. Это отразится в виде следа на обычной бумаге от копировального листа.
- Выявление герметичности бескамерных авиашин. Шину накачивают до предельного давления и удерживают при одинаковой температуре на протяжении определенного времени. За это время давление внутри шины уменьшается за счет увеличения ее габаритов. Далее измеряют разницу давления, насколько оно упало за отведенный срок.
- Определение габаритов шин. Авиационную шину устанавливают на колесо, накачивают до предельного номинального давления. Определенное время выдерживают при комнатной температуре. После окончания этого времени докачивают шину до изначального значения. Затем измеряют следующие величины: внешнюю ширину, наружный диаметр, ширину и диаметр по плечевой зоне.
Динамические
- Поправка давления. Выполняется учет влияния кривизны барабана.
- Проведение динамических испытаний шин в максимально приближенных к эксплуатации условиях: на скорость, нагрузку и т.д. Источник
Видео:Шасси самолёта , делают так !!!Скачать
Как делают колеса самолета
С тех пор, как человечество изобрело колесо, в его конструкции вносилось так много изменений, что сегодня мало кого можно удивить видом колеса. Однако то, что для обычного взгляда не представляет интереса, для специалиста компании Унитех является предметом пристального внимания. Именно авиационные колеса во многом и содержат сегодня большинство новейших изобретений, воплощенных на практике. В отличие от автомобильных колес, колеса самолетов являются многофункциональной конструкцией, способной выдерживать колоссальные нагрузки и обеспечивающие комфорт и безопасность пассажиров. Покрышка самолетного колеса, как и автомобильная, впрочем, любая другая покрышка, выполняется из смеси натурального и синтетического каучука. Внутри колес отсутствует камера, от них отказались еще в 60-70 годах прошлого века. Такой отказ был связан с ненадежностью камер и большим количеством разрывов покрышек в основном в странах Африки и Латинской Америки. Сегодня авиационные покрышки изготавливаются из нескольких слоев резины армированными несколькими слоями стального корда. Такое строение колеса связано с тем, что покрышки испытывают огромное давление при взлете и, особенно при посадке самолета. В отличие от автомобильных покрышек покрышки самолетов не имеют протектора, основной протектор имеет продольный рисунок, его вполне достаточно для удержания самолета на полосе при посадке и взлете. Особенностью колес самолета, как и всего, что связано с авиацией, является постоянный контроль технического состояния, проверка давления в шинах авиалайнеров производится каждый раз после приземления и перед вылетом. Как и автомобильные колеса шасси требуют периодической подкачки, ведь давление внутри может достигать 15 атмосфер, к тому же заполняют колеса самолетов не обычным воздухом, а азотом. Диски шасси изготавливаются в основном из титана – легкого, но прочного металла, он легче, чем алюминий, но прочнее стали. Кроме того, сами диски колес изготавливаются разборными, из двух половинок, соединяемые между собой болтовыми соединениями. Для увеличения герметичности колес перед сборкой обе половины диска и внешние стороны покрышки обрабатываются специальным клеевым составом, и только после этого производят сборку. Титановые диски колес не отливаются, как автомобильные, а выковываются, титан – ковкий металл. Авиационные колеса в отличие от автомобильных имеют относительно небольшой срок годности, и при малейших подозрениях механиков на наличие дефектов подлежат замене. Именно поэтому наземными службами аэропортов в обязательном порядке при подписании с авиакомпаниями контрактов учитываются вопросы наличия запасных колес, к самолетам компании планируемых для совершения рейсов. Источник
Видео:Как делают шины в России? Показываем этапы производства на заводе «Нижнекамскшина»Скачать
nauka_yaru
Видео:Почему шасси самолёта никогда не взорвется?Скачать
Наука и технология
Размещу-ка я свой постег про конструкцию основных колёс Airbus-320. Сначала — об окружении.
Красные штуки по бокам колеса на первом фото — это упорные колодки, устанавливаемые под колёса на стоянке.
Патамушта самолёт не всегда стоит на стояночном тормозе (например, с тормоза можно снять для более быстрого охлаждения тормозов после посадки), и чтобы он не поехал куда ему надо, а не лёдчеку. Колёса до установки на самолёт хранятся в ангаре закрытыми от (солнечного?) света.
Тут можно уже рассмотреть некоторые подробности их жизни: Такое колесо весит примерно 130 кг. Собственно колесо состоит из диска и шины. Диски состоят из двух половин, разнимающихся в осевом направлении, и скреплённых по окружности колеса болтами. Гайки тех болтов видны на предыдущем фото по периметру диска ближе к его наружному краю.
Вот эти гайки крупнее: Между ними — заглушка, на место которой (как мне кажется) может быть установлен датчик давления азота — для вывода этой информации на дисплей в кабине пилотов.
На наших самолётах такая модификация не сделана, и датчиков в колёсах нет. Для замены резины болты откручиваются от их гаек и половины диска разнимаются.
После этого проводится неразрушающий контроль половинок (методы не знаю — или ультразвуковой, или магнитный, или вихревыми токами). Если всё в поряде, то устанавливается новая шина, половинки снова встречаются, стягиваются болтами, а колесо накачивается до некоего давления, обычно ниже рабочего. Авиационные колёса накачивают азотом. Дело в том, что резина может выделять различные углеводороды внутрь шины. Особенно, если она нагревается очень горячими тормозами.
Чтобы эта смесь не самовоспламенилась (а 14 атмосфер горючей смеси внутри ниши шасси самолёта — это очень нехило), и нужен инертный газ, заполняющий объём шины. Азот же — самый доступный из них: его в воздухе аж 78%. Для закачки используется зарядный штуцер, ввёрнутый в наружную половинку диска: Золотник этого штуцера по конструкции совершенно аналогичен автомобильному, разве только на некоторых типах колёс он больше по размеру.
Нормальное давление азота в шинах Boeing-737 и Airbus-320 — около 14 атмосфер (в автомобильных — порядка 2 атм). Давление проверяется приблизительно раз в сутки по форме линейного обслуживания Daily-check.
Для защиты от перенаддува на некоторых дисках бывают установлены предохранительные мембраны, разрушающиеся при превышении давления внутри колеса. Штука полезная, так как в мире бывали случаи сильного перенаддува колёс при зарядке перед установкой. Обычно в таких случаях разрывается диск колеса (внутри которого азот поступает внутрь шины), и близстоящие работники получают различные увечья. Boeing выпускал иллюстрированное предостережение насчёт. Окончательную накачку до рабочего давления производители техники рекомендуют производить после установки колеса, уже на самолёте. Далее, от периферии диска к центру, на первых фото видны круглые отверстия в диске.
На мой взгляд, функции у них две: облегчение диска и обеспечение естественной вентиляции тормозов.
При торможении самолёта от посадочной скорости более 200 км/ч до около нуля за короткое время пробега тормозА, естественно, очень сильно нагреваются. Нормальный нагрев на A320 — это примерно до 100 градусов Цельсия над температурой окружающей среды.
При нагреве более 300 градусов появляется предупреждающее сообщение на дисплее в кабине пилотов.
Тормоза можно охлаждать только воздухом (наверное, или азотом).
Так как Эйрбасы моделей 320 и 321 имеют бОльшую массу, чем 319-е, то на них могут устанавливаться дополнительные вентиляторы для обдува тормозов. Вентиляторы крепятся в кожухе с наружной стороны колёсного диска, а привод (электродвигатель) находится внутри колёсной оси (которая является частью амортизационной стойки шасси). Внутри диска колеса находится (как мне кажется) теплозащитный экран, отделяющий тормозные диски от диска колеса и уменьшающий нагрев последнего: Вот он в верхней части, весь такой зеркальный. Стального цвета направляющие входят в пазы тормозных дисков при установке колеса. Кстати, по сравнению с Ту-154 эта конструкция гораздо более удобна — там устроено наоборот (выступы на тормозных дисках, а вырезы — в колёсных), что довольно-таки затрудняло установку колёс (зато они там были меньше и легче). Колесо опирается на ось через два роликовых конических подшипника — внешний и внутренний. (См. самое первое фото)
Далее, в самом центре колёсного диска, находится крышка.
Под ней тоже есть интересного.
Крышка крепится просто — всего одним хомутом: Если его снять, мы видим завораживающее: (Я аж балдею от этого вида ) Если опять же рассматривать снаружи внутрь (в данном случае — сверху вниз), то мы видим:
Белое — кольцевой выступ диска колеса, за каковой выступ крепится крышка,
Чёрное — уплотнение наружного подшипника. Думаю, для предотвращения выбивания смазки из него и, может, заодно для защиты его от грязи. Далее — корончатая гайка, которой и крепится колесо к оси.
Да, кстати — колесо крепится всего одной гайкой
Эта гайка законтрена двумя диаметрально расположенными небольшими болтами, проходящими через прорези гайки в отверстия в оси колеса (ось — это невращающаяся часть, растёт из амортстойки).
Гайки болтов контрятся шплинтами.
(А вот на 737 это сделано ещё лучше — там для контровки такой гайки используется всего одно пружинное кольцо, вставляемое сквозь отверстие в гайке в отверстие шайбы. Правда, тут зато шайбы той нет) И, наконец, в самой серёдке — наконечник датчика скорости вращения колеса.
В амортстойке, в оси каждого из основных колёс, есть свой электрический датчик частоты вращения.
Сам датчик находится внутри оси, а его валик торчит наружу наконечником со внутренними шлицами: Крышка находится на колесе и, разумеется, вращается вместе с ним. Вращая ротор датчика.
Сигналы ото всех датчиков поступают в систему антиюзовой автоматики, которая регулирует давление подводимой в тормоз каждого колеса гидрожидкости и подтормаживает колёса таким образом, чтобы они не проскальзывали. То есть пилот может нажимать тапку со всей дури, но работающая антиюзовая система не даст ему снести колёса, а будет обеспечивать максимально эффективное торможение. В заключение — о покрышках/шинах.
Шины на современных колёсах бескамерные, армированные стальным кордом. Не знаю, как на 320, а на 737 шина переднего колеса содержит 7 или 9 слоёв металлического корда, а основного колеса — 14. Кроме них, ближе к поверхности резины присутствуют ещё два тонких нитяных корда. В общем случае, по этим нитяным кордам определяется допустимость износа протектора. Новая покрышка выглядит так: Тут глубина канавок — порядка сантиметра, а ширина канавок — сантиметра полтора-два (примерно). Для разных типов самолётов устанавливаются различные предельные значения износа поверхности шин, но в целом они очень похожи и различаются лишь незначительными деталями. Наверное, потому, что производители шин одни и те же — Michelin, GoodYear, Yokohama. Для примера несколько видов износа. Если накачанное колесо изнашивается до дна канавок, его обычно пора менять.
Вообще, по моим подсчётам, колёса меняются довольно редко. В среднем по нескольким самолётам, на каждом из них менялось примерно по три колеса в месяц. Учитывая, что на 320-м колёс всего шесть, получается, что каждое колесо меняется в среднем раз в два месяца (если предположить, что у нас хромает отчётность, то можно увеличить ориентировочную интенсивность до одного раза в месяц на каждое колесо).
Разумеется, бывают и более частые замены по порезам. После сдутия колесо выглядит так: Что интересно, в документах такой вид износа определяется как «перенаддув», хотя нашей компании так и не удалось добиться равномерно прямолинейного профиля износа ни при каком давлении
(наверное, из-за тех техников, кто проявляет бдительность и докачивает «спущенные», по их мнению, колёса) Так называемые «Chevron cutting» («Шевронообразные начёсы»): Износ до первого нитяного корда: Обычно это уже не допускается. Разве что до базы.
На Airbus. Хотя про Боинги пишут, что такового износа следует избегать по экономическим соображениям — чтобы обеспечить наварку резины на уже изношенную покрышку. Что интересно, нигде в документах не указывают допустимую глубину пореза
Везде ориентируются на повреждённость нитяного и основного кордов.
Есть также допуски на ширину и длину порезов. Два нитяных корда на колесе от Boeing-767: Ну что же.
Пожалуй, это всё, что вспомнилось на данный момент про колёса. Рассказ представил член клуба «Наука и технология» Lx Источник
- Свежие записи
- Нужно ли менять пружины при замене амортизаторов
- Скрипят амортизаторы на машине что делать
- Из чего состоит стойка амортизатора передняя
- Чем стянуть пружину амортизатора без стяжек
- Для чего нужны амортизаторы в автомобиле
- Правообладателям
- Политика конфиденциальности
🔍 Видео
Испытания авиационной шиныСкачать
Почему покрышки НЕ взрываются при посадке самолета?Скачать
Авиационные колесаСкачать
Производство шин Мишлен - Мегазавод (national geographic)Скачать
Взрыв колеса на БЕЛАЗЕ!!! СМОТРЕТЬ ВСЕМ!Скачать
Как шины самолёта выдерживают такую нагрузку?Скачать
Сборка Airbus А380 - самого большого авиалайнера в миреСкачать
💥Как делают шины? Производство шин! Как делают шины на заводе?💥Скачать
Огромные, волосатые и поэтические. Как делают шины?Скачать
Гражданская авиация! Вся правда о самолётах, полётах и бизнесе! Aero Region Training! Лётчик! Пилот!Скачать
Замена носового колеса самолетаСкачать
Невероятный процесс производства авиационных шинСкачать
Как Перерабатывают Автомобильные Шины в ЕвропеСкачать
КАК ДЕЛАЮТ ШИНЫ В РОССИИ? NOKIAN HAKKAPELIITTAСкачать
Как делают автомобильные шины // НЕпростые вещиСкачать
Изготовление колёсных дисковСкачать
Как восстанавливают старые шины, для повторного использованияСкачать