Как находить поток цилиндра

Авто помощник

Содержание
  1. Решебник Кузнецова Л. А. VIII Векторный анализ
  2. Задание 4. Найти поток векторного поля a через часть S, вырезаемую плоскостями P1 и P2 (нормаль внешняя к замкнутой поверхности, образуемой данными поверхностями).
  3. Найти поток векторного поля a через часть S, вырезаемую плоскостью P (нормаль внешняя к замкнутой поверхности, образуемой данными поверхностями).
  4. Поток векторного поля: теория и примеры
  5. Понятие потока векторного поля и его вычисление как поверхностного интеграла
  6. Направление и интенсивность потока векторного поля
  7. Вычисление потока векторного поля: примеры
  8. Как находить поток цилиндра
  9. Решебник Кузнецова Л. А. VIII Векторный анализ
  10. Задание 4. Найти поток векторного поля a через часть S, вырезаемую плоскостями P1 и P2 (нормаль внешняя к замкнутой поверхности, образуемой данными поверхностями).
  11. Найти поток векторного поля a через часть S, вырезаемую плоскостью P (нормаль внешняя к замкнутой поверхности, образуемой данными поверхностями).
  12. Как находить поток цилиндра
  13. 📸 Видео

Видео:Найти поток векторного поля через замкнутую поверхность S (нормаль внешняя).Скачать

Найти поток векторного поля через замкнутую поверхность S (нормаль внешняя).

Решебник Кузнецова Л. А.
VIII Векторный анализ

Задание 4. Найти поток векторного поля a через часть S, вырезаемую плоскостями P1 и P2 (нормаль внешняя к замкнутой поверхности, образуемой данными поверхностями).

&nbsp &nbsp &nbsp &nbsp Вариант 1 &nbsp &nbsp Вариант 2 &nbsp &nbsp Вариант 3 &nbsp &nbsp Вариант 4 &nbsp &nbsp Вариант 5 &nbsp &nbsp Вариант 6

&nbsp &nbsp &nbsp &nbsp Вариант 7 &nbsp &nbsp Вариант 8 &nbsp &nbsp Вариант 9 &nbsp &nbsp Вариант 10

Найти поток векторного поля a через часть S, вырезаемую плоскостью P (нормаль внешняя к замкнутой поверхности, образуемой данными поверхностями).

&nbsp Вариант 11 &nbsp &nbsp Вариант 12 &nbsp &nbsp Вариант 13 &nbsp &nbsp Вариант 14 &nbsp &nbsp Вариант 15 &nbsp &nbsp Вариант 16

&nbsp Вариант 17 &nbsp &nbsp Вариант 18 &nbsp &nbsp Вариант 19 &nbsp &nbsp Вариант 20 &nbsp &nbsp Вариант 21 &nbsp &nbsp Вариант 22

&nbsp Вариант 23 &nbsp &nbsp Вариант 24 &nbsp &nbsp Вариант 25 &nbsp &nbsp Вариант 26 &nbsp &nbsp Вариант 27 &nbsp &nbsp Вариант 28

Видео:Непосредственное вычисление потокаСкачать

Непосредственное вычисление потока

Поток векторного поля: теория и примеры

Видео:Поток векторного поля через замкнутую поверхностьСкачать

Поток векторного поля через замкнутую поверхность

Понятие потока векторного поля и его вычисление как поверхностного интеграла

Своим названием поток векторного поля обязан задачам гидродинамики о потоке жидкости. Поток векторного поля может быть вычислен в виде поверхностного интеграла, который выражает общее количество жидкости, протекающей в единицу времени через некоторую поверхность в направлении вектора скорости течения жидкости в данной точке. Понятие потока векторного поля обобщается также на магнетический поток, поток электричества, поток тепла через заданную поверхность и другие. Поток векторного поля может быть вычислен в виде поверхностного интеграла как первого, так и второго рода и далее мы дадим его вывод через эти интегралы.

Пусть в некоторой области пространства задано векторное поле

и поверхность σ, в каждой точке M которой определён единичный вектор нормали . Пусть также направляющие косинусы этого вектора — непрерывные функции координат x, y, z точки M.

Определение потока векторного поля. Потоком W поля вектора через поверхность σ называется поверхностный интеграл

Обозначим как a n проекцию вектора на на единичный вектор . Тогда поток можем записать как поверхностный интеграл первого рода

поток векторного поля можно вычислить и как поверхностный интеграл второго рода

Видео:Демидович №4442: поток вектора через цилиндрСкачать

Демидович №4442: поток вектора через цилиндр

Направление и интенсивность потока векторного поля

Поток векторного поля зависит от местоположения поверхности σ. Если поверхность размещена так, что во всех её точках вектор поля образует с вектором нормали поверхности острый угол, то проекции вектора a n положительны и, таким образом поток W также положителен (рисунок ниже). Если же поверхность размещена так, что во всех её точках вектор образует с вектором нормали поверхности тупой угол, то поток W отрицателен.

Как находить поток цилиндра

Через каждую точку поверхности проходит одна векторная линия, поэтому поверхность σ пересекает бесконечное множество векторных линий. Однако условно можно принять, что поверхность σ пересекает некоторое конечное число векторных линий. Поэтому можно считать, что поток векторного поля — это число векторных линий, пересекающих поверхность σ. Чем интенсивнее поток векторного поля, тем более плотно расположены векторные линии и в результате получается бОльший поток жидкости.

Читайте также: Неразборный паровой цилиндр carel blot1c00h2

Если поток векторного поля — поле скорости частиц текущей жидкости через поверхность σ, то поверхностный интеграл равен количеству жидкости, протекающей в единицу времени через поверхность σ. Если рассматривать магнетическое поле, которое характеризуется вектором магнетической индукции , то поверхностный интеграл называется магнетическим потоком через поверхность σ и равен общему количеству линий магнетической индукции, пересекающих поверхность σ. В случае электростатического поля интеграл выражает число линий электрической силы, пересекающих поверхность σ. Этот интеграл называется потоком вектора интенсивности электростатического поля через поверхнсть σ. В теории теплопроводности рассматривается стационарный поток тепла через поверхность σ. Если k — коэффициент теплопроводности, а u(M) — температура в данной области, то поток тепла, протекающего через поверхность σ в единицу времени, определяет интеграл .

Видео:Алгоритм Форда - ФалкерсонаСкачать

Алгоритм Форда - Фалкерсона

Вычисление потока векторного поля: примеры

Пример 1. Вычислить поток векторного поля через верхнюю сторону треугольника, образованного пересечением плоскости с координатными плоскостями. Решить задачу двумя способами: 1) через поверхностный интеграл первого рода; 2) через поверхностный интеграл второго рода.

1) Поверхностью σ является треугольник ABC , а её проекцией на ось xOy — треугольник AOB .

Как находить поток цилиндра

Координатами вектора нормали данной поверхности являются коэффициенты при переменных в уравнении плоскости:

Из выражения единичного вектора нормали следует, что направляющий косинус . Тогда .

Теперь можем выразить поток векторного поля в виде поверхностного интеграла первого рода и начать решать его:

Продолжаем вычислять интеграл и, таким образом, поток векторного поля:

Получили ответ: поток векторного поля равен 64.

2) Выражая поток векторного поля через поверхностный интеграл второго рода, получаем

Представим этот интеграл в виде суммы трёх интегралов и каждый вычислим отдельно. Учитывая, что проекция поверхности на ось yOz является треугольник OCB , который ограничивают прямые y = 0 , z = 0 , y + 3z = 6 или y = 6 − 3z и в точках поверхности 2x = 6 − y − 3 , получаем первый интеграл и вычисляем его:

Проекцией поверхности на ось xOz является треугольник OAC , который ограничен прямыми x = 0 , z = 0 , 2x + 3z = 6 или . По этим данным получаем второй интеграл, который сразу решаем:

Проекцией поверхности на ось xOy является треугольник OAB , который ограничен прямыми x = 0 , y = 0 , 2x + y = 6 . Получаем третий интеграл и решаем его:

Осталось только сложить все три интеграла:

Получили ответ: поток векторного поля равен 64. Как видим, он совпадает с ответом, полученным в первом случае.

Пример 2. Вычислить поток векторного поля через верхнюю сторону треугольника, образованного пересечением плоскости с координатными плоскостями. Решить задачу двумя способами: 1) через поверхностный интеграл первого рода; 2) через поверхностный интеграл второго рода.

Решение. Данная поверхность представляет собой треугольник ABC , изображённый на рисунке ниже.

Как находить поток цилиндра

1) Коэффициенты при x , y и z из уравнения плоскости являются координатами вектора нормали плоскости, которые нужно взять с противоположным знаком (так как вектор нормали верхней стороны треугольника образует с осью Oz острый угол, так что третья координата вектора нормали плоскости должна быть положительной). Таким образом, вектор нормали запишется в координатах так:

единичный вектор нормали (орт):

Скалярное произведение векторного поля и единичного нормального вектора:

Поток векторного поля, таким образом, представим в виде поверхностного интеграла первого рода

Выразим «зет» и продифференцируем то, что уже можно продифференцировать:

2) Представим поток векторного поля в виде поверхностного интеграла второго рода:

Первый и второй интегралы берём со знаком «минус», так как вектор нормали поверхности образует с осями Ox и Oy тупой угол.

Вычисляем первый интеграл:

Как находить поток цилиндра

Вычисляем второй интеграл:

Как находить поток цилиндра

Вычисляем третий интеграл:

Как находить поток цилиндра

Складываем три интеграла и получаем тот же самый результат:

Читайте также: Крепление рабочего цилиндра нивы шевроле

Пример 3. Вычислить поток векторного поля через внешнюю сторону параболоида в первом октанте, отсечённую плоскостью z = 9 .

Как находить поток цилиндра

Поток векторного поля представим в виде поверхностного интеграла второго рода:

Второй интеграл берём со знаком минус, так как нормальный вектор поверхности образует с осью Oz тупой угол. Вычисляем первый интеграл:

Как находить поток цилиндра

Вычисляем второй интеграл:

Как находить поток цилиндра

В сумме получаем искомый поток векторного поля:

Видео:Поток векторного поля №4Скачать

Поток векторного поля №4

Как находить поток цилиндра

Видео:Поток через замкнутую поверхность. Формула Остроградского-ГауссаСкачать

Поток через замкнутую поверхность. Формула Остроградского-Гаусса

Решебник Кузнецова Л. А.
VIII Векторный анализ

Задание 4. Найти поток векторного поля a через часть S, вырезаемую плоскостями P1 и P2 (нормаль внешняя к замкнутой поверхности, образуемой данными поверхностями).

&nbsp &nbsp &nbsp &nbsp Вариант 1 &nbsp &nbsp Вариант 2 &nbsp &nbsp Вариант 3 &nbsp &nbsp Вариант 4 &nbsp &nbsp Вариант 5 &nbsp &nbsp Вариант 6

&nbsp &nbsp &nbsp &nbsp Вариант 7 &nbsp &nbsp Вариант 8 &nbsp &nbsp Вариант 9 &nbsp &nbsp Вариант 10

Найти поток векторного поля a через часть S, вырезаемую плоскостью P (нормаль внешняя к замкнутой поверхности, образуемой данными поверхностями).

&nbsp Вариант 11 &nbsp &nbsp Вариант 12 &nbsp &nbsp Вариант 13 &nbsp &nbsp Вариант 14 &nbsp &nbsp Вариант 15 &nbsp &nbsp Вариант 16

&nbsp Вариант 17 &nbsp &nbsp Вариант 18 &nbsp &nbsp Вариант 19 &nbsp &nbsp Вариант 20 &nbsp &nbsp Вариант 21 &nbsp &nbsp Вариант 22

&nbsp Вариант 23 &nbsp &nbsp Вариант 24 &nbsp &nbsp Вариант 25 &nbsp &nbsp Вариант 26 &nbsp &nbsp Вариант 27 &nbsp &nbsp Вариант 28

Видео:Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.Скачать

Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.

Как находить поток цилиндра

Экспериментально установленные закон Кулона и принцип суперпозиции позволяют полностью описать электростатическое поле заданной системы зарядов в вакууме. Однако, свойства электростатического поля можно выразить в другой, более общей форме, не прибегая к представлению о кулоновском поле точечного заряда.

Введем новую физическую величину, характеризующую электрическое поле – поток Φ вектора напряженности электрического поля. Пусть в пространстве, где создано электрическое поле, расположена некоторая достаточно малая площадка . Произведение модуля вектора на площадь и на косинус угла α между вектором и нормалью к площадке называется элементарным потоком вектора напряженности через площадку (рис. 1.3.1):

где – модуль нормальной составляющей поля

Рассмотрим теперь некоторую произвольную замкнутую поверхность . Если разбить эту поверхность на малые площадки Δ, определить элементарные потоки Δ поля через эти малые площадки, а затем их просуммировать, то в результате мы получим поток вектора через замкнутую поверхность (рис. 1.3.2):

В случае замкнутой поверхности всегда выбирается внешняя нормаль .

Теорема Гаусса утверждает:

Поток вектора напряженности электростатического поля через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε0.

Для доказательства рассмотрим сначала сферическую поверхность , в центре которой находится точечный заряд . Электрическое поле в любой точке сферы перпендикулярно к ее поверхности и равно по модулю

где – радиус сферы. Поток через сферическую поверхность будет равен произведению на площадь сферы 4π. Следовательно,

Окружим теперь точечный заряд произвольной замкнутой поверхностью и рассмотрим вспомогательную сферу радиуса (рис. 1.3.3).

Рассмотрим конус с малым телесным углом при вершине. Этот конус выделит на сфере малую площадку , а на поверхности – площадку . Элементарные потоки и Δ через эти площадки одинаковы. Действительно,

Здесь Δ – площадка, выделяемая конусом с телесным углом ΔΩ на поверхности сферы радиуса .

Так как а следовательно Отсюда следует, что полный поток электрического поля точечного заряда через произвольную поверхность, охватывающую заряд, равен потоку 0 через поверхность вспомогательной сферы:

Аналогичным образом можно показать, что, если замкнутая поверхность не охватывает точечного заряда , то поток = 0. Такой случай изображен на рис. 1.3.2. Все силовые линии электрического поля точечного заряда пронизывают замкнутую поверхность насквозь. Внутри поверхности зарядов нет, поэтому в этой области силовые линии не обрываются и не зарождаются.

Обобщение теоремы Гаусса на случай произвольного распределения зарядов вытекает из принципа суперпозиции. Поле любого распределения зарядов можно представить как векторную сумму электрических полей точечных зарядов. Поток системы зарядов через произвольную замкнутую поверхность будет складываться из потоков электрических полей отдельных зарядов. Если заряд оказался внутри поверхности , то он дает вклад в поток, равный если же этот заряд оказался снаружи поверхности, то вклад его электрического поля в поток будет равен нулю.

Таким образом, теорема Гаусса доказана.

Теорема Гаусса является следствием закона Кулона и принципа суперпозиции. Но если принять утверждение, содержащееся в этой теореме, за первоначальную аксиому, то ее следствием окажется закон Кулона. Поэтому теорему Гаусса иногда называют альтернативной формулировкой закона Кулона.

Используя теорему Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля вокруг заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией и общую структуру поля можно заранее угадать.

Примером может служить задача о вычислении поля тонкостенного полого однородно заряженного длинного цилиндра радиуса . Эта задача имеет осевую симметрию. Из соображений симметрии электрическое поле должно быть направлено по радиусу. Поэтому для применения теоремы Гаусса целесообразно выбрать замкнутую поверхность в виде соосного цилиндра некоторого радиуса и длины , закрытого с обоих торцов (рис. 1.3.4).

При весь поток вектора напряженности будет проходить через боковую поверхность цилиндра, площадь которой равна , так как поток через оба основания равен нулю. Применение теоремы Гаусса дает:

где τ – заряд единицы длины цилиндра. Отсюда

Этот результат не зависит от радиуса заряженного цилиндра, поэтому он применим и к полю длинной однородно заряженной нити.

Для определения напряженности поля внутри заряженного цилиндра нужно построить замкнутую поверхность для случая . В силу симметрии задачи поток вектора напряженности через боковую поверхность гауссова цилиндра должен быть и в этом случае равен . Согласно теореме Гаусса, этот поток пропорционален заряду, оказавшемуся внутри замкнутой поверхности. Этот заряд равен нулю. Отсюда следует, что электрическое поле внутри однородно заряженного длинного полого цилиндра равно нулю.

Аналогичным образом можно применить теорему Гаусса для определения электрического поля в ряде других случаев, когда распределение зарядов обладает какой-либо симметрией, например, симметрией относительно центра, плоскости или оси. В каждом из таких случаев нужно выбирать замкнутую гауссову поверхность целесообразной формы. Например, в случае центральной симметрии гауссову поверхность удобно выбирать в виде сферы с центром в точке симметрии. При осевой симметрии замкнутую поверхность нужно выбирать в виде соосного цилиндра, замкнутого с обоих торцов (как в рассмотренном выше примере). Если распределение зарядов не обладает какой-либо симметрией и общую структуру электрического поля угадать невозможно, применение теоремы Гаусса не может упростить задачу определения напряженности поля.

Рассмотрим еще один пример симметричного распределения зарядов – определение поля равномерно заряженной плоскости (рис. 1.3.5).

В этом случае гауссову поверхность целесообразно выбрать в виде цилиндра некоторой длины, закрытого с обоих торцов. Ось цилиндра направлена перпендикулярно заряженной плоскости, а его торцы расположены на одинаковом расстоянии от нее. В силу симметрии поле равномерно заряженной плоскости должно быть везде направлено по нормали. Применение теоремы Гаусса дает:

где σ – поверхностная плотность заряда , т. е. заряд, приходящийся на единицу площади.

Полученное выражение для электрического поля однородно заряженной плоскости применимо и в случае плоских заряженных площадок конечного размера. В этом случае расстояние от точки, в которой определяется напряженность поля, до заряженной площадки должно быть значительно меньше размеров площадки.

📸 Видео

"ГТ" ПРОСТЕЙШИЙ СПОСОБ ПРОВЕРКИ ПОДСОСА ВОЗДУХА!!!Скачать

"ГТ" ПРОСТЕЙШИЙ СПОСОБ ПРОВЕРКИ ПОДСОСА ВОЗДУХА!!!

Закон БернуллиСкачать

Закон Бернулли

Как возникает подъёмная сила крыла?Скачать

Как возникает подъёмная сила крыла?

Поток векторного поля. Вычисление при помощи поверхностного интеграла.Скачать

Поток векторного поля. Вычисление при помощи поверхностного интеграла.

Поток векторного поля №1Скачать

Поток векторного поля №1

Простые самостоятельные расчеты в гидравликеСкачать

Простые самостоятельные расчеты в гидравлике

Поток векторного поля №3Скачать

Поток векторного поля №3

Еще раз про поток и циркуляциюСкачать

Еще раз про поток и циркуляцию

Как войти в состояние потока здесь и сейчасСкачать

Как войти в состояние потока здесь и сейчас

Формула Остроградского-ГауссаСкачать

Формула Остроградского-Гаусса

Шестеренный насос - устройство, принцип работы, применениеСкачать

Шестеренный насос - устройство, принцип работы, применение

Как синхронизировать движение гидроцилиндров? Почему происходит перекос?Скачать

Как синхронизировать движение гидроцилиндров? Почему происходит перекос?
Поделиться или сохранить к себе:
Технарь знаток