Как найти объем параллелепипеда если в него вписан цилиндр

Авто помощник

Видео:ЕГЭ СТЕРЕОМЕТРИЯ КАК НАЙТИ ОБЪЕМ ПАРАЛЛЕЛЕПИПЕДА ВПИСАННОГО В ПУЗАТЫЙ ЦИЛИНДР | МОЩНАЯ ЗАДАЧКАСкачать

ЕГЭ СТЕРЕОМЕТРИЯ КАК НАЙТИ ОБЪЕМ ПАРАЛЛЕЛЕПИПЕДА ВПИСАННОГО В ПУЗАТЫЙ ЦИЛИНДР | МОЩНАЯ ЗАДАЧКА

Как найти объем параллелепипеда если в него вписан цилиндр

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.

Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 4, а объем параллелепипеда равен

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 18. Найдите объем параллелепипеда.

Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 1296, а объем параллелепипеда равен

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 7. Найдите объем параллелепипеда.

Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 14 2 = 196, а объем параллелепипеда равен

площадь основания круга пr^2,зачем вы диаметр возводите в квадрат ??

Диаметр является стороной квадрата, лежащего в основании параллелепипеда. Диаметр в квадрате — площадь этого основания.

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1,5. Найдите объем параллелепипеда.

Это задание ещё не решено, приводим решение прототипа.

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.

Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 4, а объем параллелепипеда равен

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 6. Найдите объем параллелепипеда.

Это задание ещё не решено, приводим решение прототипа.

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.

Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 4, а объем параллелепипеда равен

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 8,5. Найдите объем параллелепипеда.

Это задание ещё не решено, приводим решение прототипа.

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.

Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 4, а объем параллелепипеда равен

Читайте также: Тормозной цилиндр старого образца урал

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 9,5. Найдите объем параллелепипеда.

Это задание ещё не решено, приводим решение прототипа.

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.

Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 4, а объем параллелепипеда равен

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 2. Найдите объем параллелепипеда.

Это задание ещё не решено, приводим решение прототипа.

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.

Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 4, а объем параллелепипеда равен

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 15. Найдите объем параллелепипеда.

Это задание ещё не решено, приводим решение прототипа.

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.

Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 4, а объем параллелепипеда равен

Видео:Математика 5 Объем Объем прямоугольного параллелепипедаСкачать

Математика 5 Объем  Объем прямоугольного параллелепипеда

Как найти объем параллелепипеда если в него вписан цилиндр

Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шара.

Радиусы шара и основания цилиндра равны. Площадь поверхности цилиндра, с радиусом основания r и высотой 2r равна

Площадь поверхности шара радиуса r равна то есть в 1,5 раза меньше площади поверхности цилиндра. Следовательно, площадь поверхности шара равна 12.

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.

Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 4, а объем параллелепипеда равен

Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 4. Объем параллелепипеда равен 16. Найдите высоту цилиндра.

Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому сторона основания равна 8, а площадь основания равна 64. Тогда высота цилиндра равна

Почему получилось 64? Что-то не понятно:(

Длина диаметра цилиндра равна длине стороны квадрата в основании.

Читайте также: Как вытащить поршни из тормозного цилиндра

В куб вписан шар радиуса 1. Найдите объем куба.

Ребро куба равно диаметру вписанного в него шара, а объем куба равен кубу его ребра. Отсюда имеем:

В основании прямой призмы лежит прямоугольный треугольник с катетами 6 и 8. Боковые ребра равны Найдите объем цилиндра, описанного около этой призмы.

По теореме Пифагора длина гипотенузы треугольника в основании Поскольку гипотенуза является диаметром основания описанного цилиндра, его объем

Видео:КАК НАЙТИ ВЫСОТУ ПРЯМОУГОЛЬНОГО ПАРАЛЛЕЛЕПИПЕДА, ЕСЛИ ИЗВЕСТЕН ОБЪЕМ, ДЛИНА И ШИРИНА? Пример 5 классСкачать

КАК НАЙТИ ВЫСОТУ ПРЯМОУГОЛЬНОГО ПАРАЛЛЕЛЕПИПЕДА, ЕСЛИ ИЗВЕСТЕН ОБЪЕМ, ДЛИНА И ШИРИНА? Пример 5 класс

Как найти объем параллелепипеда если в него вписан цилиндр

Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шара.

Радиусы шара и основания цилиндра равны. Площадь поверхности цилиндра, с радиусом основания r и высотой 2r равна

Площадь поверхности шара радиуса r равна то есть в 1,5 раза меньше площади поверхности цилиндра. Следовательно, площадь поверхности шара равна 12.

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.

Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 4, а объем параллелепипеда равен

Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 4. Объем параллелепипеда равен 16. Найдите высоту цилиндра.

Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому сторона основания равна 8, а площадь основания равна 64. Тогда высота цилиндра равна

Почему получилось 64? Что-то не понятно:(

Длина диаметра цилиндра равна длине стороны квадрата в основании.

В куб вписан шар радиуса 1. Найдите объем куба.

Ребро куба равно диаметру вписанного в него шара, а объем куба равен кубу его ребра. Отсюда имеем:

В основании прямой призмы лежит прямоугольный треугольник с катетами 6 и 8. Боковые ребра равны Найдите объем цилиндра, описанного около этой призмы.

По теореме Пифагора длина гипотенузы треугольника в основании Поскольку гипотенуза является диаметром основания описанного цилиндра, его объем

Видео:КАК НАЙТИ ОБЪЕМ ПРЯМОУГОЛЬНОГО ПАРАЛЛЕЛЕПИПЕДА? Примеры | МАТЕМАТИКА 5 классСкачать

КАК НАЙТИ ОБЪЕМ ПРЯМОУГОЛЬНОГО ПАРАЛЛЕЛЕПИПЕДА? Примеры | МАТЕМАТИКА 5 класс

Как найти объем параллелепипеда если в него вписан цилиндр

Радиус основания цилиндра равен равен r , а высота равна 5r . Около цилиндра описан параллелепипед, отношение объёма которого к объёму цилиндра равно . Найдите длину отрезка большей диагонали параллелепипеда, лежащего внутри цилиндра.

Решение

Пусть параллелепипед ABCDA 1B 1C 1D 1 описан около цилиндра (рис.1). Тогда параллелепипед – прямой, окружность одного основания цилиндра вписана в основание ABCD параллелепипеда, а окружность второго основания – в основание A 1B 1C 1D 1 . Поскольку в параллелограммы ABCD и A 1B 1C 1D 1 вписаны окружности, эти параллелограммы – ромбы. Если AC и A 1C 1 – большие диагонали этих ромбов, то AC 1 и A 1C – большие диагонали параллелепипеда. Поскольку высоты цилиндра и параллелепипеда равны, площади оснований параллелепипеда и цилиндра относятся как их объемы, а т.к. радиус окружности, вписанной в ромб, равен r , то площадь ромба равна его полупериметру, умноженному на r . Если a – сторона ромба, то
= = ,
откуда находим, что a = r . Пусть окружность с центром O , вписанная в ромб ABCD , касается стороны AB в точке F , а K – середина AB (рис.2). Обозначим OKB = α . Тогда
sin α = = = , cos α = ,

Читайте также: Пропуск зажигания первого цилиндра рено логан

sin OAB = sin = = ,
поэтому
OA = = r , AC = 2OA = 2r ,

tg CAC 1 = = = , cos CAC 1 = .
Рассмотрим плоскость ACC 1A 1 (рис.3). Центры O и O 1 окружностей, вписанных в ромбы ABCD и A 1B 1C 1D 1 , – середины сторон AC и A 1C 1 прямоугольника ACC 1A 1 . Пусть M и N – точки пересечения первой окружности с отрезком AC , а M 1 и N 1 – второй окружности с отрезком A 1C 1 , причём MM 1 || NN 1 . Пусть диагональ AC 1 пересекает отрезки MM 1 и NN 1 в точках P и Q соответственно. Опустим перпендикуляр PH из точки P на NN 1 . Тогда
PQ = = = = 3r.

Ответ

Источники и прецеденты использования

Проект осуществляется при поддержке и .

Видео:5 класс, 21 урок, Объемы. Объем прямоугольного параллелепипедаСкачать

5 класс, 21 урок, Объемы. Объем прямоугольного параллелепипеда

Объем параллелепипеда

Как найти объем параллелепипеда если в него вписан цилиндр

Видео:Параллелепипед описан около цилиндраСкачать

Параллелепипед описан около цилиндра

Понятие объема

Чтобы без труда вычислить объём любой фигуры, нужно разобраться с определениями.

Объём — это количественная характеристика пространства, занимаемого телом или веществом.

Другими словами, это то, сколько места занимает предмет.

Объём измеряется в единицах измерения размера пространства, занимаемого телом, то есть в кубических метрах, кубических сантиметрах, кубических миллиметрах.

За единицу измерения объёма можно принять куб с ребром 1 см, то есть, кубический сантиметр (см 3 ), кубический миллиметр (1 мм 3 ), кубический метр (1 м 3 ).

Объём всегда выражается в положительных числах. Это число показывает, какое именно количество единиц измерения есть в теле. Например, сколько воды в бассейне, сока в графине, земли в клумбе.

Любое объемное тело имеет объем. Получается, при желании мы можем вычислить объем кружки, смартфона, вазы, кота — чего угодно.

Видео:КАК НАЙТИ ВЫСОТУ ПРЯМОУГОЛЬНОГО ПАРАЛЛЕЛЕПИПЕДА, ЕСЛИ ИЗВЕСТЕН ОБЪЕМ И ПЛОЩАДЬ ОСНОВАНИЯ? 5 классСкачать

КАК НАЙТИ ВЫСОТУ ПРЯМОУГОЛЬНОГО ПАРАЛЛЕЛЕПИПЕДА, ЕСЛИ ИЗВЕСТЕН ОБЪЕМ И ПЛОЩАДЬ ОСНОВАНИЯ? 5 класс

Объем прямоугольного параллелепипеда

Прямоугольный параллелепипед — это многогранник с шестью гранями, каждая из которых является параллелограммом.

Как найти объем параллелепипеда если в него вписан цилиндр

Прямоугольным параллелепипедом называют параллелепипед, у которого основание — прямоугольник, а боковые ребра образуют с основаниями прямые углы.

Как найти объем параллелепипеда если в него вписан цилиндр

Формула объема прямоугольного параллелепипеда

Чтобы вычислить объем прямоугольного параллелепипеда, найдите произведение его длины, ширины и высоты:

Чтобы не запутаться в формулах, запоминайте табличку с условными обозначениями.

🎦 Видео

Формула объёма прямоугольного параллелепипеда (для 3В)Скачать

Формула объёма прямоугольного параллелепипеда (для 3В)

Найти объем параллелепипеда (геометрия от bezbotvy)Скачать

Найти объем параллелепипеда (геометрия от bezbotvy)

Геометрия Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 4Скачать

Геометрия Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 4

Цилиндр - расчёт площади, объёма.Скачать

Цилиндр - расчёт площади, объёма.

ЗАДАНИЕ 2| ЕГЭ ПРОФИЛЬ| Цилиндр вписан в прямоугольный параллелепипед. Радиус основания и высота цилСкачать

ЗАДАНИЕ 2| ЕГЭ ПРОФИЛЬ| Цилиндр вписан в прямоугольный параллелепипед. Радиус основания и высота цил

Задачи на цилиндр. Цилиндр и параллелепипед - bezbotvyСкачать

Задачи на цилиндр. Цилиндр и параллелепипед - bezbotvy

Математика 5 класс (Урок№32 - Объём прямоугольного параллелепипеда. Единицы объёма.)Скачать

Математика 5 класс (Урок№32 - Объём прямоугольного параллелепипеда. Единицы объёма.)

11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Задание 2 ЕГЭ профиль (Стереометрия) по сборнику Ященко 2023Скачать

Задание 2  ЕГЭ профиль (Стереометрия) по сборнику Ященко 2023

КАК НАЙТИ ПЛОЩАДЬ ПОВЕРХНОСТИ ПРЯМОУГОЛЬНОГО ПАРАЛЛЕЛЕПИПЕДА? Примеры | МАТЕМАТИКА 5 классСкачать

КАК НАЙТИ ПЛОЩАДЬ ПОВЕРХНОСТИ ПРЯМОУГОЛЬНОГО ПАРАЛЛЕЛЕПИПЕДА? Примеры | МАТЕМАТИКА 5 класс

Площадь поверхности параллелепипедаСкачать

Площадь поверхности параллелепипеда

№187. Найдите диагональ прямоугольного параллелепипеда, если его измерения равны: а) 1, 1, 2;Скачать

№187. Найдите диагональ прямоугольного параллелепипеда, если его измерения равны: а) 1, 1, 2;

10 класс, 24 урок, Прямоугольный параллелепипедСкачать

10 класс, 24 урок, Прямоугольный параллелепипед
Поделиться или сохранить к себе:
Технарь знаток