Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать
Цилиндры, вписанные в призмы. Свойства призмы, описанной около цилиндра
Определение 2. Если цилиндр вписан в призму, то призму называют описанной около цилиндра.
Прежде, чем перейти к вопросу о том, в какую же призму можно вписать цилиндр, докажем следующее свойство призм.
Утверждение 1. Если в основания призмы можно вписать окружности, то отрезок, соединяющий центры вписанных окружностей, будет параллелелен и равен боковому ребру призмы.
Рассуждая аналогичным образом, заключаем, что точка O’ равноудалена от всех прямых, на которых лежат ребра верхнего основания A’1A’2, A’2A’3, . , An – 1An , а поскольку O’ лежит в плоскости верхнего основания, то точка O’ является центром вписанной в многоугольник A’1A’2 . A’n окружности.
В силу того, что прямые OO’ и A1A’1 параллельны по построению, а прямые OA1 и O’A’ параллельны как линии пересечения двух параллельных плоскостей третьей плоскостью, замечаем, что четырехугольник OO’A1A’1 является параллелограммом, откуда вытекает равенство: OO’ = A1A’1 .
Теорема. В призму можно вписать цилиндр тогда и только тогда, когда выполнены следующие два условия:
- Призма является прямой призмой;
- В основания призмы можно вписать окружности.
Доказательство. Докажем сначала, что если в n – угольную призму вписан цилиндр, то оба условия теоремы выполнены.
Действительно, выполнение условия 2 следует непосредственно из определения цилиндра, вписанного в призму. Докажем, что выполняется и условие 1, т.е. докажем, что описанная около цилиндра призма является прямой призмой.
С этой целью рассмотрим ось цилиндра OO’ , соединяющую центры окружностей, вписанных в нижнее и верхнее основания призмы (рис. 3).
Согласно утверждению 1 отрезок OO’ параллелен боковым ребрам призмы. Поскольку ось цилиндра OO’ перпендикулярна к плоскостям его оснований, то и боковые ребра призмы также перпендикулярны к плоскостям оснований, то есть призма является прямой призмой.
Читайте также: Прокачка заднего тормозного цилиндра ваз 2114
Таким образом, мы доказали, что, если призма описана около цилиндра, то оба условия теоремы выполнены.
Теперь рассмотрим прямую n – угольную призму высоты h, в основания которой можно вписать окружности, и докажем, что в такую призму можно вписать цилиндр.
Обозначим буквой O центр окружности радиуса r, вписанной в нижнее основание призмы, а символом O’ обозначим центр окружности, вписанной в верхнее основание призмы (рис. 4).
Поскольку многоугольники, лежащие в основаниях призмы равны, то и радиусы вписанных в них окружностей будут равны. Согласно утверждению 1 отрезок OO’ параллелен и равен боковому ребру призмы. Так как рассматриваемая призма прямая, то ее боковые ребра перпендикулярны плоскости основания и равны высоте призмы h. Значит, и отрезок OO’ перпендикулярен плоскости основания призмы и равен h.
Цилиндр с осью OO’ , радиусом r и высотой h и будет вписан в исходную призму.
Доказательство теоремы завершено.
Следствие 1 . Высота призмы, описанной около цилиндра, равна высоте цилиндра.
Следствие 2. В любую прямую треугольную призму можно вписать цилиндр.
Справедливость этого утверждения вытекает из того факта, что в любой треугольник можно вписать окружность.
Следствие 3. В любую правильную n – угольную призму можно вписать цилиндр.
Для доказательства этого следствия достаточно заметить, правильная призма является прямой призмой. Основаниями правильной призмы являются правильные многоугольники, а в любой правильный n – угольник можно вписать окружность.
Видео:Цилиндр - расчёт площади, объёма.Скачать
Отношение объемов цилиндра и описанной около него правильной n — угольной призмы
Задача. Найти отношение объемов цилиндра и описанной около него правильной n — угольной призмы.
Решение. Поскольку и объем цилиндра, и объем призмы объем призмы вычисляются по формуле
а высота цилиндра равна высоте описанной около него призмы, то для объемов цилиндра и описанной около него правильной n — угольной призмы справедливо равенство
Следствие 4. Отношение объема цилиндра к объему описанной около него правильной треугольной призмы правильной треугольной призмы равно
Следствие 5. Отношение объема цилиндра к объему описанной около него правильной четырехугольной призмы правильной четырехугольной призмы равно
Читайте также: Палец цилиндра гур мтз
Следствие 6. Отношение объема цилиндра к объему описанной около него правильной шестиугольной призмы равно
Видео:ЕГЭ математика СТЕРЕОМЕТРИЯ 8#5.18🔴Скачать
Геометрия. 11 класс
Конспект урока
Урок №12. Объемы прямой призмы и цилиндра
Перечень вопросов, рассматриваемых в теме
1) Доказательство теорем об объемах прямой призмы и цилиндра
2) Определение призмы, вписанной в цилиндр и призмы описанной около цилиндра
3) Решение задач на нахождение объемов прямой призмы и цилиндра
V=Sh объем прямой призмы и цилиндра
Бутузов В. Ф., Кадомцев С. Б., Атанасян Л. С. и др. Геометрия. 10–11 классы : учеб.для общеобразоват. организаций : базовый и углубл. Уровни – М.: Просвещение, 2014. – 255, сс. 121-126.
Шарыгин И.Ф. Геометрия. 10–11 кл.: учеб.для общеобразоват. учреждений – М.: Дрофа, 2009. – 235, : ил., ISBN 978–5–358–05346–5, сс. 178-196.
Потоскуев Е.В., Звавич Л. И., Геометрия. 11кл.: учеб. Для классов с углубл. И профильным изучением математики общеобразоват. Учреждений – М.: Дрофа, 2004. – 368 с.: ил., ISBN 5–7107–8310–2, сс. 5-30.
Теоретический материал для самостоятельного изучения
Цилиндр — геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими её.
Прямая призма — это призма, у которой боковые ребра перпендикулярны плоскости основания, откуда следует, что все боковые грани являются прямоугольниками
Объем всякого цилиндра равен произведению площади основания на высоту
Объем призмы — это произведение площади ее основания на высоту
Призма вписана в цилиндр, если ее основания вписаны в основания цилиндра.
Призма описана около цилиндра, если ее основания описаны около оснований цилиндра.
Высота любой призмы (вписанной в цилиндр или описанной около цилиндра), равна высоте самого цилиндра
Примеры и разбор решения заданий тренировочного модуля
№1. Найти объем прямой треугольной призмы высотой 6, в основании которой — прямоугольный треугольник с катетами 3 и 7.
Решение: Объем призмы вычисляется по формуле , т.к. в основании призмы – прямоугольный треугольник, то объем призмы будет вычисляться по формуле , где а и в – катеты треугольника. Подставляя все данные задачи в формулу, получаем ответ: .
Читайте также: Как определить утечку антифриза в цилиндр двигателя
№2. Найти объём правильной -угольной призмы, у которой каждое ребро равно а, если: а) n=3, б) n=4, в) n=6.
Решение: поскольку призма правильная, значит, это прямая призма и в основании лежит правильный многоугольник.
Формулу для вычисления объёма прямой призмы мы только что вывели . Поскольку, по условию все ребра призмы равны a, значит, высота призмы равна h=a. Осталось найти площадь основания.
Основанием правильной треугольной призмы является правильный, то есть равносторонний треугольник n=3. Площадь правильного треугольника со стороной f вычислить несложно, она равна .
Применяя формулу для вычисления объёма прямой призмы, получим, что объём правильной треугольной призмы равен .
Основанием правильной четырёхугольной призмы является квадрат n=4. Площадь квадрата со стороной a равна . Тогда объём правильной четырёхугольной призмы равен .
Основанием правильной шестиугольной призмы является правильный шестиугольник n=6. Своими большими диагоналями шестиугольник делится на 6 равносторонних треугольников. Площадь каждого из треугольников равна , значит, площадь правильного шестиугольника равна . Тогда объём правильной шестиугольной призмы равен .
Ответ 3/2 ед 3
№3 Найди объём прямой призмы если =120°, АВ=5 см, ВС=3см и наибольшая из площадей боковых граней равна 35см 2 .
Решение: боковая грань прямой призмы является прямоугольником.
Площадь каждой боковой грани равна произведению высоты призмы на сторону основания.
То есть большая боковая грань содержит большую сторону основания.
По условию =120°, – тупой, а поскольку напротив большей стороны лежит больший угол, то большей стороной основания будет сторона АС. Вычислим длину стороны АС по теореме косинусов.
Получим, что длина стороны АС=7см.
Зная большую сторону основания и площадь наибольшей боковой грани призмы, длину высоты призмы вычислить нетрудно.
Получим, что длина высоты призмы равна .
Для нахождения объёма призмы, воспользуемся только что доказанной формулой . Площадь основания можно найти либо по формуле Герона , либо по формуле .
Мы воспользуемся второй формулой. Получим, что площадь основания равна .
Тогда объём прямой призмы равен .
Ответ 75/4 см 3
📽️ Видео
Видеоурок по математике "Цилиндр"Скачать
Объем призмы. Практическая часть. 11 класс.Скачать
Геометрия 11 класс: Объем призмы и цилиндра. ВидеоурокСкачать
11 класс, 31 урок, Объем прямой призмыСкачать
11 класс, 32 урок, Объем цилиндраСкачать
Как найти объем. Принцип Кавальери | Ботай со мной #050 | Борис Трушин |Скачать
11 класс. Геометрия. Объем цилиндраСкачать
Объём цилиндраСкачать
Геометрия 11 класс (Урок№12 - Объемы прямой призмы и цилиндра.)Скачать
Призма и цилиндр. Практическая часть. 11 класс.Скачать
Призма и пирамида. Площадь и объем. Вебинар | Математика 10 классСкачать
Объем цилиндра. Практическая часть. 11 класс.Скачать
В основании прямой призмы лежит прямоугольный треугольник с катетами 5 и 6. Боковые ребра призмы...Скачать
Геометрия Цилиндр описан около шара. Найдите объем шара, если известно, что объем цилиндра равен 60.Скачать
Миникурс по геометрии. Куб, призма, цилиндр и конусСкачать
Объем цилиндраСкачать
Задача про ЦИЛИНДР / Как найти объем детали? / Профиль ЕГЭСкачать