Как найти объем цилиндра описанного вокруг призмы

Авто помощник

Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Цилиндры, вписанные в призмы. Свойства призмы, описанной около цилиндра

Как найти объем цилиндра описанного вокруг призмы

Как найти объем цилиндра описанного вокруг призмы

Определение 2. Если цилиндр вписан в призму, то призму называют описанной около цилиндра.

Прежде, чем перейти к вопросу о том, в какую же призму можно вписать цилиндр, докажем следующее свойство призм.

Утверждение 1. Если в основания призмы можно вписать окружности, то отрезок, соединяющий центры вписанных окружностей, будет параллелелен и равен боковому ребру призмы.

Как найти объем цилиндра описанного вокруг призмы

Как найти объем цилиндра описанного вокруг призмы

Рассуждая аналогичным образом, заключаем, что точка O’ равноудалена от всех прямых, на которых лежат ребра верхнего основания A’1A’2, A’2A’3, . , An – 1An , а поскольку O’ лежит в плоскости верхнего основания, то точка O’ является центром вписанной в многоугольник A’1A’2 . A’n окружности.

В силу того, что прямые OO’ и A1A’1 параллельны по построению, а прямые OA1 и O’A’ параллельны как линии пересечения двух параллельных плоскостей третьей плоскостью, замечаем, что четырехугольник OO’A1A’1 является параллелограммом, откуда вытекает равенство: OO’ = A1A’1 .

Теорема. В призму можно вписать цилиндр тогда и только тогда, когда выполнены следующие два условия:

  1. Призма является прямой призмой;
  2. В основания призмы можно вписать окружности.

Доказательство. Докажем сначала, что если в n – угольную призму вписан цилиндр, то оба условия теоремы выполнены.

Действительно, выполнение условия 2 следует непосредственно из определения цилиндра, вписанного в призму. Докажем, что выполняется и условие 1, т.е. докажем, что описанная около цилиндра призма является прямой призмой.

С этой целью рассмотрим ось цилиндра OO’ , соединяющую центры окружностей, вписанных в нижнее и верхнее основания призмы (рис. 3).

Как найти объем цилиндра описанного вокруг призмы

Как найти объем цилиндра описанного вокруг призмы

Согласно утверждению 1 отрезок OO’ параллелен боковым ребрам призмы. Поскольку ось цилиндра OO’ перпендикулярна к плоскостям его оснований, то и боковые ребра призмы также перпендикулярны к плоскостям оснований, то есть призма является прямой призмой.

Читайте также: Прокачка заднего тормозного цилиндра ваз 2114

Таким образом, мы доказали, что, если призма описана около цилиндра, то оба условия теоремы выполнены.

Теперь рассмотрим прямую n – угольную призму высоты h, в основания которой можно вписать окружности, и докажем, что в такую призму можно вписать цилиндр.

Обозначим буквой O центр окружности радиуса r, вписанной в нижнее основание призмы, а символом O’ обозначим центр окружности, вписанной в верхнее основание призмы (рис. 4).

Как найти объем цилиндра описанного вокруг призмы

Как найти объем цилиндра описанного вокруг призмы

Поскольку многоугольники, лежащие в основаниях призмы равны, то и радиусы вписанных в них окружностей будут равны. Согласно утверждению 1 отрезок OO’ параллелен и равен боковому ребру призмы. Так как рассматриваемая призма прямая, то ее боковые ребра перпендикулярны плоскости основания и равны высоте призмы h. Значит, и отрезок OO’ перпендикулярен плоскости основания призмы и равен h.

Цилиндр с осью OO’ , радиусом r и высотой h и будет вписан в исходную призму.

Доказательство теоремы завершено.

Следствие 1 . Высота призмы, описанной около цилиндра, равна высоте цилиндра.

Следствие 2. В любую прямую треугольную призму можно вписать цилиндр.

Справедливость этого утверждения вытекает из того факта, что в любой треугольник можно вписать окружность.

Следствие 3. В любую правильную n – угольную призму можно вписать цилиндр.

Для доказательства этого следствия достаточно заметить, правильная призма является прямой призмой. Основаниями правильной призмы являются правильные многоугольники, а в любой правильный n – угольник можно вписать окружность.

Видео:Цилиндр - расчёт площади, объёма.Скачать

Цилиндр - расчёт площади, объёма.

Отношение объемов цилиндра и описанной около него правильной n — угольной призмы

Задача. Найти отношение объемов цилиндра и описанной около него правильной n — угольной призмы.

Решение. Поскольку и объем цилиндра, и объем призмы объем призмы вычисляются по формуле

а высота цилиндра равна высоте описанной около него призмы, то для объемов цилиндра и описанной около него правильной n — угольной призмы справедливо равенство

Следствие 4. Отношение объема цилиндра к объему описанной около него правильной треугольной призмы правильной треугольной призмы равно

Следствие 5. Отношение объема цилиндра к объему описанной около него правильной четырехугольной призмы правильной четырехугольной призмы равно

Читайте также: Палец цилиндра гур мтз

Следствие 6. Отношение объема цилиндра к объему описанной около него правильной шестиугольной призмы равно

Видео:ЕГЭ математика СТЕРЕОМЕТРИЯ 8#5.18🔴Скачать

ЕГЭ математика СТЕРЕОМЕТРИЯ 8#5.18🔴

Геометрия. 11 класс

Конспект урока

Урок №12. Объемы прямой призмы и цилиндра

Перечень вопросов, рассматриваемых в теме

1) Доказательство теорем об объемах прямой призмы и цилиндра

2) Определение призмы, вписанной в цилиндр и призмы описанной около цилиндра

3) Решение задач на нахождение объемов прямой призмы и цилиндра

V=Sh объем прямой призмы и цилиндра

Бутузов В. Ф., Кадомцев С. Б., Атанасян Л. С. и др. Геометрия. 10–11 классы : учеб.для общеобразоват. организаций : базовый и углубл. Уровни – М.: Просвещение, 2014. – 255, сс. 121-126.

Шарыгин И.Ф. Геометрия. 10–11 кл.: учеб.для общеобразоват. учреждений – М.: Дрофа, 2009. – 235, : ил., ISBN 978–5–358–05346–5, сс. 178-196.

Потоскуев Е.В., Звавич Л. И., Геометрия. 11кл.: учеб. Для классов с углубл. И профильным изучением математики общеобразоват. Учреждений – М.: Дрофа, 2004. – 368 с.: ил., ISBN 5–7107–8310–2, сс. 5-30.

Теоретический материал для самостоятельного изучения

Цилиндр — геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими её.

Прямая призма — это призма, у которой боковые ребра перпендикулярны плоскости основания, откуда следует, что все боковые грани являются прямоугольниками

Объем всякого цилиндра равен произведению площади основания на высоту

Объем призмы — это произведение площади ее основания на высоту

Призма вписана в цилиндр, если ее основания вписаны в основания цилиндра.

Призма описана около цилиндра, если ее основания описаны около оснований цилиндра.

Высота любой призмы (вписанной в цилиндр или описанной около цилиндра), равна высоте самого цилиндра

Примеры и разбор решения заданий тренировочного модуля

№1. Найти объем прямой треугольной призмы высотой 6, в основании которой — прямоугольный треугольник с катетами 3 и 7.

Как найти объем цилиндра описанного вокруг призмы

Решение: Объем призмы вычисляется по формуле , т.к. в основании призмы – прямоугольный треугольник, то объем призмы будет вычисляться по формуле , где а и в – катеты треугольника. Подставляя все данные задачи в формулу, получаем ответ: .

Читайте также: Как определить утечку антифриза в цилиндр двигателя

№2. Найти объём правильной -угольной призмы, у которой каждое ребро равно а, если: а) n=3, б) n=4, в) n=6.

Решение: поскольку призма правильная, значит, это прямая призма и в основании лежит правильный многоугольник.

Как найти объем цилиндра описанного вокруг призмы

Как найти объем цилиндра описанного вокруг призмы

Формулу для вычисления объёма прямой призмы мы только что вывели . Поскольку, по условию все ребра призмы равны a, значит, высота призмы равна h=a. Осталось найти площадь основания.

Как найти объем цилиндра описанного вокруг призмы

Основанием правильной треугольной призмы является правильный, то есть равносторонний треугольник n=3. Площадь правильного треугольника со стороной f вычислить несложно, она равна .

Как найти объем цилиндра описанного вокруг призмы

Применяя формулу для вычисления объёма прямой призмы, получим, что объём правильной треугольной призмы равен .

Основанием правильной четырёхугольной призмы является квадрат n=4. Площадь квадрата со стороной a равна Как найти объем цилиндра описанного вокруг призмы. Тогда объём правильной четырёхугольной призмы равен Как найти объем цилиндра описанного вокруг призмы.

Основанием правильной шестиугольной призмы является правильный шестиугольник n=6. Своими большими диагоналями шестиугольник делится на 6 равносторонних треугольников. Площадь каждого из треугольников равна Как найти объем цилиндра описанного вокруг призмы, значит, площадь правильного шестиугольника равна Как найти объем цилиндра описанного вокруг призмы. Тогда объём правильной шестиугольной призмы равен Как найти объем цилиндра описанного вокруг призмы.

Как найти объем цилиндра описанного вокруг призмы

Ответ 3/2 ед 3

Как найти объем цилиндра описанного вокруг призмы

№3 Найди объём прямой призмы если =120°, АВ=5 см, ВС=3см и наибольшая из площадей боковых граней равна 35см 2 .

Решение: боковая грань прямой призмы является прямоугольником.

Как найти объем цилиндра описанного вокруг призмы

Площадь каждой боковой грани равна произведению высоты призмы на сторону основания.

Как найти объем цилиндра описанного вокруг призмы

Как найти объем цилиндра описанного вокруг призмы

Как найти объем цилиндра описанного вокруг призмы

То есть большая боковая грань содержит большую сторону основания.

Как найти объем цилиндра описанного вокруг призмы

По условию =120°, – тупой, а поскольку напротив большей стороны лежит больший угол, то большей стороной основания будет сторона АС. Вычислим длину стороны АС по теореме косинусов.

Как найти объем цилиндра описанного вокруг призмы

Как найти объем цилиндра описанного вокруг призмы

Получим, что длина стороны АС=7см.

Зная большую сторону основания и площадь наибольшей боковой грани призмы, длину высоты призмы вычислить нетрудно.

Как найти объем цилиндра описанного вокруг призмы

Получим, что длина высоты призмы равна .

Для нахождения объёма призмы, воспользуемся только что доказанной формулой Как найти объем цилиндра описанного вокруг призмы. Площадь основания можно найти либо по формуле Герона Как найти объем цилиндра описанного вокруг призмы, либо по формуле Как найти объем цилиндра описанного вокруг призмы.

Как найти объем цилиндра описанного вокруг призмы

Мы воспользуемся второй формулой. Получим, что площадь основания равна .

Как найти объем цилиндра описанного вокруг призмы

Тогда объём прямой призмы равен .

Как найти объем цилиндра описанного вокруг призмы

Ответ 75/4 см 3

📽️ Видео

Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Объем призмы. Практическая часть. 11 класс.Скачать

Объем призмы. Практическая часть. 11 класс.

Геометрия 11 класс: Объем призмы и цилиндра. ВидеоурокСкачать

Геометрия 11 класс: Объем призмы и цилиндра. Видеоурок

11 класс, 31 урок, Объем прямой призмыСкачать

11 класс, 31 урок, Объем прямой призмы

11 класс, 32 урок, Объем цилиндраСкачать

11 класс, 32 урок, Объем цилиндра

Как найти объем. Принцип Кавальери | Ботай со мной #050 | Борис Трушин |Скачать

Как найти объем. Принцип Кавальери | Ботай со мной #050 | Борис Трушин |

11 класс. Геометрия. Объем цилиндраСкачать

11 класс. Геометрия. Объем цилиндра

Объём цилиндраСкачать

Объём цилиндра

Геометрия 11 класс (Урок№12 - Объемы прямой призмы и цилиндра.)Скачать

Геометрия 11 класс (Урок№12 - Объемы прямой призмы и цилиндра.)

Призма и цилиндр. Практическая часть. 11 класс.Скачать

Призма и цилиндр. Практическая часть. 11 класс.

Призма и пирамида. Площадь и объем. Вебинар | Математика 10 классСкачать

Призма и пирамида. Площадь и объем.  Вебинар | Математика 10 класс

Объем цилиндра. Практическая часть. 11 класс.Скачать

Объем цилиндра. Практическая часть. 11 класс.

В основании прямой призмы лежит прямоугольный треугольник с катетами 5 и 6. Боковые ребра призмы...Скачать

В основании прямой призмы лежит прямоугольный треугольник с катетами 5 и 6. Боковые ребра призмы...

Геометрия Цилиндр описан около шара. Найдите объем шара, если известно, что объем цилиндра равен 60.Скачать

Геометрия Цилиндр описан около шара. Найдите объем шара, если известно, что объем цилиндра равен 60.

Миникурс по геометрии. Куб, призма, цилиндр и конусСкачать

Миникурс по геометрии. Куб, призма, цилиндр и конус

Объем цилиндраСкачать

Объем цилиндра

Задача про ЦИЛИНДР / Как найти объем детали? / Профиль ЕГЭСкачать

Задача про ЦИЛИНДР / Как найти объем детали? / Профиль ЕГЭ
Поделиться или сохранить к себе:
Технарь знаток