Определение 1. Конусом, вписанным в цилиндр, называют такой конус, у которого основание совпадает с одним из оснований цилиндра, а вершина совпадает с центром другого основания цилиндра (рис. 1).
Определение 2. Если конус вписан в цилиндр, то цилиндр называют описанным около конуса.
Замечание. Высота конуса равна высоте цилиндра, описанного этого конуса.
Утверждение. Около любого конуса можно описать цилиндр.
Доказательство. Для доказательства достаточно построить цилиндр, у которого одно из оснований совпадает с основанием конуса, а плоскость другого основания проходит через вершину конуса.
Видео:Цилиндр, конус, шар, 6 классСкачать
Отношение объемов конуса и описанного около него цилиндра
Утверждение. Объем конуса в 3 раза меньше объема описанного около него цилиндра.
Доказательство. Пусть радиус основания конуса равен r, а высота конуса равна h. Поскольку цилиндр описан около конуса, то радиус основания цилиндра также равен r, а высота цилиндра равна h. Тогда объем конуса равен
Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать
Тригонометрия
Ещё по теме
Найти периметр окружности радиуса \( r = 10 \) см.
Дан ромб с диагоналями \(d1=5\) см и \(d2=4\). Найти площадь ромба.
В область, ограниченную параболой \(y = c — \) и осью \(Ox,\) вписан прямоугольник, стороны которого параллельны координатным осям и одна сторона лежит на оси \(Ox.\) Определить наибольшую площадь прямоугольника.
Выразить километры в метрах:
Дан ромб, диагонали которого равны \(d1=4\) см, \(d2=6\) см. Острый угол равен \(α = 30°\) . Найдите площадь фигуры через сторону и угол.
Равнобедренная трапеция описана вокруг окружности радиуса \(R\) (рисунок \(2\)). При каком угле при основании \(\alpha\) площадь заштрихованной области будет наименьшей?
Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!
О сайте
На нашем сайте вы найдете множество полезных калькуляторов, конвертеров, таблиц, а также справочных материалов по основным дисциплинам.
Самый простой способ сделать расчеты в сети — это использовать подходящие онлайн инструменты. Воспользуйтесь поиском, чтобы найти подходящий инструмент на нашем сайте.
calcsbox.com
На сайте используется технология LaTeX.
Поэтому для корректного отображения формул и выражений
пожалуйста дождитесь полной загрузки страницы.
© 2021 Все калькуляторы online
Копирование материалов запрещено
Видео:Как найти объем вписанного конуса? 🔍 #умскул_профильнаяматематика #умскул #никитасалливанСкачать
Математика
Ещё по теме
Выразить километры в метрах:
Окно имеет форму прямоугольника, ограниченного сверху полукругом (рисунок \(3\)). Периметр окна равен \(P.\) Определить радиус полукруга \(R,\) при котором площадь окна является наибольшей.
\( A( _ >; _ >)=A(-7;6) \) — центр окружности. Радиус окружности равен \( 3 \) . Необходимо найти координаты точки \( P \) , полученной поворотом начального радиус-вектора на \( P \) .
Диагональ равнобокой трапеции является биссектрисой ее острого угла и делит среднюю линию трапеции на отрезки длиной 15 см и 33 см. Вычислить (в см 2 ) площадь трапеции.
Площадь ромба равна \( 10.8 \) см 2 , а площадь круга, вписанного в этот ромб — \( 2.25\pi \) см 2 .
1. Определите длину радиуса круга, вписанного в ромб (в см).
2. Вычислить длину стороны ромба (в см).
Дан ромб, диагонали которого равны \(d1=4\) см, \(d2=6\) см. Острый угол равен \(α = 30°\) . Найдите площадь фигуры через сторону и угол.
Основания равнобедренной (равнобокой) трапеции равны 8 и 20 сантиметров. Боковая сторона равна 10 см. Найдите площадь трапеции, подобной данной, которая имеет высоту 12 см.
Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!
О сайте
На нашем сайте вы найдете множество полезных калькуляторов, конвертеров, таблиц, а также справочных материалов по основным дисциплинам.
Читайте также: Можно ли ездить без компрессии в одном цилиндре
Самый простой способ сделать расчеты в сети — это использовать подходящие онлайн инструменты. Воспользуйтесь поиском, чтобы найти подходящий инструмент на нашем сайте.
calcsbox.com
На сайте используется технология LaTeX.
Поэтому для корректного отображения формул и выражений
пожалуйста дождитесь полной загрузки страницы.
© 2021 Все калькуляторы online
Копирование материалов запрещено
Видео:11 класс. Геометрия. Объем конуса. 21.04.2020Скачать
Цилиндр, конус, шар
Цилиндр, конус, шар
Цилиндр – тело, ограниченное цилиндрической поверхностью и двумя кругами с границами $М$ и $М_1$. Цилиндрическая поверхность называется боковой поверхностью цилиндра, а круги – основаниями цилиндра.
Образующие цилиндрической поверхности называются образующими цилиндра, на рисунке образующая $L$.
Цилиндр называется прямым, если его образующие перпендикулярны основаниям. Осевое сечение цилиндра — это прямоугольник, у которого одна сторона равна диаметру основания, а вторая – высоте цилиндра.
Основные понятия и свойства цилиндра:
- Основания цилиндра равны и лежат в параллельных плоскостях.
- Все образующие цилиндра параллельны и равны.
- Радиусом цилиндра называется радиус его основания ($R$).
- Высотой цилиндра называется расстояние между плоскостями оснований (в прямом цилиндре высота равна образующей).
- Осью цилиндра называется отрезок, соединяющий центры оснований ($ОО_1$).
- Если радиус или диаметр цилиндра увеличить в n раз, то объем цилиндра увеличится в $n^2$ раз.
- Если высоту цилиндра увеличить в m раз, то объем цилиндра увеличится в то же количество раз.
- Если призму вписать в цилиндр, то ее основаниями будут являться равные многоугольники, вписанные в основание цилиндра, а боковые ребра — образующими цилиндра.
- Если цилиндр вписан в призму, то ее основания — равные многоугольники, описанные около оснований цилиндра. Плоскости граней призмы касаются боковой поверхности цилиндра.
- Если в цилиндр вписана сфера, то радиус сферы равен радиусу цилиндра и равен половине высоты цилиндра.
Площадь поверхности и объем цилиндра.
Площадь боковой поверхности цилиндра равна произведению длины окружности основания на высоту.
Площадь поверхности цилиндра равна сумме двух площадей оснований и площади боковой поверхности.
Объем цилиндра равен произведению площади основания на высоту.
Объем части цилиндра, в основании которого лежит сектор: $V= / $, где $n°$ — это градусная мера центрального угла, отсекающего заданный сектор.
Цилиндр описан около шара. Объём цилиндра равен $30$. Найдите объём шара.
Если в цилиндр вписан шар, то радиус цилиндра равен радиусу шара, а высота цилиндра в два раза больше радиуса шара.
Распишем формулы объема цилиндра и шара.
Далее надо сравнить во сколько раз объем цилиндра больше объема шара, для этого разделим объемы друг на друга.
Объем цилиндра больше объема шара в $1.5$ раза, следовательно, чтобы найти объем шара, надо объем цилиндра разделить на $1.5$.
Конусом (круговым конусом) называется тело, которое состоит из круга, точки, не лежащей в плоскости этого круга, и всех отрезков, соединяющих заданную точку с точками круга.
Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими и обозначаются (l).
Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. Ось прямого конуса и его высота равны.
- Все образующие конуса равны.
- Осевым сечением конуса является равнобедренный треугольник, основание которого равно двум радиусам, а боковые стороны равны образующим конуса.
- Если боковая поверхность конуса – полукруг, то осевым сечением является равносторонний треугольник, угол при вершине равен $60°$.
- Если радиус или диаметр конуса увеличить в n раз, то его объем увеличится в $n^2$ раз.
- Если высоту конуса увеличить в m раз, то объем конуса увеличится в то же количество раз.
Площадь поверхности и объем конуса.
Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую.
Площадь поверхности конуса равна сумме площади основания и площади боковой поверхности.
Объем конуса равен трети произведения площади основания на высоту.
Читайте также: Установка цилиндра подъема кузова камаз 5511
Объем части конуса, в основании которого лежит сектор: $V= / $, где $n°$ — это градусная мера центрального угла, отсекающего заданный сектор.
Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии ($R$) от данной точки (центра сферы $О$).
Тело, ограниченное сферой, называется шаром.
Осевое сечение шара это круг, радиус которого равен радиусу шара. Осевым сечением является самый большой круг шара.
Площадь поверхности сферы: $S_ =4π·R^2=π·d^2$, где $R$ — радиус сферы, $d$ — диаметр сферы
Объем шара: $V= / = / $, где $R$ — радиус шара, $d$ — диаметр шара.
Если радиус или диаметр шара увеличить в n раз, то площадь поверхности увеличится в $n^2$ раз, а объем в $n^3$ раз.
Теорема Пифагора
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
Соотношение между сторонами и углами в прямоугольном треугольнике:
В прямоугольном треугольнике $АВС$, с прямым углом $С$:
Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.
Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.
- Синусом ($sin$) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
- Косинусом ($cos$) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
- Тангенсом ($tg$) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету.
Значения тригонометрических функций некоторых углов:
$α$ | $30$ | $45$ | $60$ |
$sinα$ | $ / $ | $ / $ | $ / $ |
$cosα$ | $ / $ | $ / $ | $ / $ |
$tgα$ | $ / $ | $1$ | $√3$ |
$ctgα$ | $√3$ | $1$ | $ / $ |
Признаки подобия треугольников:
- Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.
- Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между ними равны, то такие треугольники подобны.
- Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
Видео:Объём цилиндраСкачать
Цилиндр, конус, шар
Цилиндр, конус, шар
Цилиндр – тело, ограниченное цилиндрической поверхностью и двумя кругами с границами $М$ и $М_1$. Цилиндрическая поверхность называется боковой поверхностью цилиндра, а круги – основаниями цилиндра.
Образующие цилиндрической поверхности называются образующими цилиндра, на рисунке образующая $L$.
Цилиндр называется прямым, если его образующие перпендикулярны основаниям. Осевое сечение цилиндра — это прямоугольник, у которого одна сторона равна диаметру основания, а вторая – высоте цилиндра.
Основные понятия и свойства цилиндра:
- Основания цилиндра равны и лежат в параллельных плоскостях.
- Все образующие цилиндра параллельны и равны.
- Радиусом цилиндра называется радиус его основания ($R$).
- Высотой цилиндра называется расстояние между плоскостями оснований (в прямом цилиндре высота равна образующей).
- Осью цилиндра называется отрезок, соединяющий центры оснований ($ОО_1$).
- Если радиус или диаметр цилиндра увеличить в n раз, то объем цилиндра увеличится в $n^2$ раз.
- Если высоту цилиндра увеличить в m раз, то объем цилиндра увеличится в то же количество раз.
- Если призму вписать в цилиндр, то ее основаниями будут являться равные многоугольники, вписанные в основание цилиндра, а боковые ребра — образующими цилиндра.
- Если цилиндр вписан в призму, то ее основания — равные многоугольники, описанные около оснований цилиндра. Плоскости граней призмы касаются боковой поверхности цилиндра.
- Если в цилиндр вписана сфера, то радиус сферы равен радиусу цилиндра и равен половине высоты цилиндра.
Площадь поверхности и объем цилиндра.
Площадь боковой поверхности цилиндра равна произведению длины окружности основания на высоту.
Площадь поверхности цилиндра равна сумме двух площадей оснований и площади боковой поверхности.
Объем цилиндра равен произведению площади основания на высоту.
Объем части цилиндра, в основании которого лежит сектор: $V= / $, где $n°$ — это градусная мера центрального угла, отсекающего заданный сектор.
Цилиндр описан около шара. Объём цилиндра равен $30$. Найдите объём шара.
Если в цилиндр вписан шар, то радиус цилиндра равен радиусу шара, а высота цилиндра в два раза больше радиуса шара.
Распишем формулы объема цилиндра и шара.
Далее надо сравнить во сколько раз объем цилиндра больше объема шара, для этого разделим объемы друг на друга.
Объем цилиндра больше объема шара в $1.5$ раза, следовательно, чтобы найти объем шара, надо объем цилиндра разделить на $1.5$.
Конусом (круговым конусом) называется тело, которое состоит из круга, точки, не лежащей в плоскости этого круга, и всех отрезков, соединяющих заданную точку с точками круга.
Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими и обозначаются (l).
Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. Ось прямого конуса и его высота равны.
- Все образующие конуса равны.
- Осевым сечением конуса является равнобедренный треугольник, основание которого равно двум радиусам, а боковые стороны равны образующим конуса.
- Если боковая поверхность конуса – полукруг, то осевым сечением является равносторонний треугольник, угол при вершине равен $60°$.
- Если радиус или диаметр конуса увеличить в n раз, то его объем увеличится в $n^2$ раз.
- Если высоту конуса увеличить в m раз, то объем конуса увеличится в то же количество раз.
Площадь поверхности и объем конуса.
Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую.
Площадь поверхности конуса равна сумме площади основания и площади боковой поверхности.
Объем конуса равен трети произведения площади основания на высоту.
Объем части конуса, в основании которого лежит сектор: $V= / $, где $n°$ — это градусная мера центрального угла, отсекающего заданный сектор.
Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии ($R$) от данной точки (центра сферы $О$).
Тело, ограниченное сферой, называется шаром.
Осевое сечение шара это круг, радиус которого равен радиусу шара. Осевым сечением является самый большой круг шара.
Площадь поверхности сферы: $S_ =4π·R^2=π·d^2$, где $R$ — радиус сферы, $d$ — диаметр сферы
Объем шара: $V= / = / $, где $R$ — радиус шара, $d$ — диаметр шара.
Если радиус или диаметр шара увеличить в n раз, то площадь поверхности увеличится в $n^2$ раз, а объем в $n^3$ раз.
Теорема Пифагора
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
Соотношение между сторонами и углами в прямоугольном треугольнике:
В прямоугольном треугольнике $АВС$, с прямым углом $С$:
Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.
Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.
- Синусом ($sin$) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
- Косинусом ($cos$) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
- Тангенсом ($tg$) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету.
Значения тригонометрических функций некоторых углов:
$α$ | $30$ | $45$ | $60$ |
$sinα$ | $ / $ | $ / $ | $ / $ |
$cosα$ | $ / $ | $ / $ | $ / $ |
$tgα$ | $ / $ | $1$ | $√3$ |
$ctgα$ | $√3$ | $1$ | $ / $ |
Признаки подобия треугольников:
- Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.
- Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между ними равны, то такие треугольники подобны.
- Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
🎦 Видео
Конус. 11 класс.Скачать
Видеоурок по математике "Цилиндр"Скачать
11 класс. Геометрия. Объем цилиндраСкачать
Задача про ЦИЛИНДР / Как найти объем детали? / Профиль ЕГЭСкачать
Объем цилиндра. Практическая часть. 11 класс.Скачать
Объем цилиндраСкачать
Миникурс по геометрии. Куб, призма, цилиндр и конусСкачать
Усеченный конус. 11 класс.Скачать
🔴 Объём конуса равен 27. Через точку, делящую ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать
Объем конуса. Практическая часть. 11 класс.Скачать
11 класс, 32 урок, Объем цилиндраСкачать
Геометрия 11. Найти объем конусаСкачать
Решение задач на конусСкачать
РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДРСкачать
Как найти объем. Принцип Кавальери | Ботай со мной #050 | Борис Трушин |Скачать