Расчет объема жидкости в цилиндрической таре, лежащей на боку (создано по запросу пользователя).
Ага, сегодня я путем несложных умозаключений буду выяснять объем жидкости, находящейся в цилиндрической таре, лежащей на боку.
И это не праздности ради, а дела для.
Цитирую запрос пользователя объем сегмента цилиндра (2):
Доброго времени суток. Видел калькулятор объема сегмента цилиндра, но нужно немножко другое. По работе приходится измерять количество жидкости в таре. Так вот допустим тара цилиндрической формы R=1,13м и H=6,3м лежит на поверхности. Жидкости в таре 0,9м от поверхности. Вопрос: какой объем жидкости в таре?
Там дальше в запросе идут ссылки на решение, но это же не спортивно, поэтому я пошел своим путем ? Сразу замечу, что вторая, более сложная задача — объем жидкости в таре, лежащей под наклоном, еще ждет своего решения.
Вот калькулятор, который все считает, а ход рассуждений, как обычно, под ним.
- Объем жидкости в цилиндрической таре
- Расчета объема жидкости в цистерне
- Инструкция для калькулятора количества и объема жидкости в цистерне
- Как посчитать объем цилиндра
- Онлайн калькулятор
- Зная радиус r и высоту h
- Формула
- Пример
- Зная диаметр d и высоту h
- Формула
- Пример
- Зная площадь основания So и высоту h
- Формула
- Пример
- Зная площадь боковой поверхности Sb и высоту h
- Формула
- Пример
- Формулы, позволяющие находить объём цилиндра в метрах и литрах
- Типы цилиндров
- Вычисление объёма
- Исходные данные
- Методы расчёта
- Объём в литрах
- Видео
- Видео
Объем жидкости в цилиндрической таре
Итак, сформулируем задачу наглядно, и посмотрим на цилиндр в разрезе (см. рисунок). Если уровень жидкости m больше половины, то находим объем воздуха в оставшейся части, а потом вычитаем из общего объема — т. е. всегда сводим к случаю, изображенному на рисунке.
Формула объема всего цилиндра известна — площадь основания, помноженная на высоту.
А нам, значит, надо найти площадь фигуры, залитой синей жидкостью, и тоже помножить на высоту. Пытливый взгляд отметит, что фигура, залитая синей жидкостью, получается из сектора после вычета верхнего треугольника.
Площадь сектора находится как
, где альфа — это угол дуги в радианах.
Угол дуги нам неизвестен. Разберемся сначала с ним. Линия, опущенная вертикально вниз делит верхний треугольник на два прямоугольных треугольника. Гипотенуза у них равна R, а катет, прилежащий к верхнему углу, равен R-m. Таким образом,
и ответ нам Javascript даст как раз в радианах, то что нам нужно.
Теперь разберемся с верхним треугольником. Он равнобедренный, бедра равны R, а основание нам неизвестно. Найдем его.
А оно как раз равно удвоенному противолежащему катету, который, согласно всем известной теореме Пифагора равен
Зная все стороны треугольника, нетрудно найти его площадь по формуле Герона — Расчет площади треугольника по формуле Герона.
Вот, собственно, и все. Мы знаем площадь сектора и площадь треугольника. Вычитаем площадь треугольника из площади сектора, домножаем на высоту цилиндра (или длину цилиндра, с учетом того, что он лежит) и получаем результат.
Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать
Расчета объема жидкости в цистерне
Видео:Цилиндр - расчёт площади, объёма.Скачать
Инструкция для калькулятора количества и объема жидкости в цистерне
Размеры вводите в миллиметрах:
Читайте также: Цилиндр для замка 60114 121
D – диаметр емкости можно замерить рулеткой. Необходимо помнить что диаметр – это отрезок наибольшей длины, соединяющий две точки на окружности и проходящий через ее центр.
H – уровень жидкости замеряют, используя метршток, но если такого инструмента нет под рукой, воспользуйтесь обычным стержнем из проволоки или деревянной планкой подходящей длины. Соблюдая меры безопасности, опустите строго вертикально стержень в цистерну до дна, отметьте на нем уровень, достаньте и измерьте рулеткой. Также определить H можно, измерив, расстояние от верха цистерны до поверхности жидкости и отняв этот показатель от значения диаметра.
L – длина емкости.
Если необходим чертеж в бумажном виде, целесообразно отметить пункт «Черно-белый чертеж». Вы получите контрастное изображение и сможете его распечатать, не расходуя зря цветную краску или тонер.
Нажмите «Рассчитать» и получите следующие данные:
Объём емкости – этот параметр характеризует полный объём цистерны, т.е. какое максимальное количество жидкости в кубических метрах или литрах может в нее поместиться.
Количество жидкости – сколько вещества находится в цистерне на данный момент.
Свободный объём позволяет оценить, сколько жидкости еще можно залить в емкость.
В результате, Вы получаете расчет не только объема цистерны, но и объема жидкости в неполной цистерне.
Изделия из металла следует периодически красить, тогда срок их службы значительно возрастет. Зная площадь передней поверхности, площадь боковой поверхности и общую площадь емкости легко оценить необходимое количество лакокрасочных материалов для обработки всей емкости или ее отдельных частей.
Видео:Сколько в бочке литров? Посчитаем.Скачать
Как посчитать объем цилиндра
Видео:Задача про ЦИЛИНДР / Как найти объем детали? / Профиль ЕГЭСкачать
Онлайн калькулятор
Найти чему равен объем цилиндра (V) можно зная (либо-либо):
- радиус r и высоту h цилиндра
- диаметр d и высоту h цилиндра
- площадь основания So и высоту h цилиндра
- площадь боковой поверхности Sb и высоту h цилиндра
Подставьте значения в соответствующие поля и получите результат.
Зная радиус r и высоту h
Чему равен объем цилиндра V если известны его радиус r и высота h?
Формула
Пример
Если цилиндр имеет высоту h = 8 см, а его радиус r = 2 см, то:
V = 3.14156 ⋅ 2 2 ⋅ 8 = 3.14156 ⋅ 32 = 100.53 см 3
Зная диаметр d и высоту h
Чему равен объем цилиндра V если известны его диаметр d и высота h?
Формула
Пример
Если цилиндр имеет высоту h = 5 см, а его диаметр d = 1 см, то:
V = 3.14156 ⋅ ( 1 /2) 2 ⋅ 5 = 3.14156 ⋅ 1.25 ≈ 3.927 см 3
Зная площадь основания So и высоту h
Чему равен объем цилиндра V если известны его площадь основания So и высота h?
Формула
Пример
Если цилиндр имеет высоту h = 10 см, а площадь его основания So = 5 см 2 , то:
Зная площадь боковой поверхности Sb и высоту h
Чему равен объем цилиндра V если известны его площадь боковой поверхности Sb и высота h?
Формула
Пример
Если цилиндр имеет высоту h = 5 см, а площадь его боковой поверхности Sb = 30 см 2 , то:
V = 30 2 / 4 ⋅ 3.14⋅ 5 = 900 /62.8 = 14.33 см 3
Видео:Объем цилиндраСкачать
Формулы, позволяющие находить объём цилиндра в метрах и литрах
Среди множества геометрических фигур часто встречается и цилиндр. Это геометрическое тело применяется в многочисленных расчётах. Согласно принятой терминологии под таким понятием принято иметь ввиду тело геометрического типа, которое в своей основе имеет поверхность. Данная поверхность представляет также цилиндрическую форму.
В литературе данная поверхность часто именуется, как поверхность бокового вида. Кроме этого, в такой фигуре есть пара поверхностей, носящих наименование оснований. Эти основания цилиндра представляют собой окружности равного диаметра. Цилиндр, в основании которого находится круг принято считать круговым.
Ещё со школьных времён знакома всем фигура цилиндра классического типа. Это и есть круговой цилиндр.
Видео:11 класс. Геометрия. Объем цилиндраСкачать
Типы цилиндров
В математике существует несколько типов цилиндров, которые постоянно используются в геометрии.
- Цилиндр прямого типа. Это геометрическая фигура, которая имеет прямой угол между боковой поверхностью и основаниями. Такой тип самый распространённый и часто применяется в решении большого количества задач.
- Наклонный цилиндр. Исходя из основания фигуры, можно сделать вывод, что угол между боковой поверхностью и основаниями фигуры будет отличным от прямого. При этом он может колебаться в своём значении, как в большую, так и в меньшую сторону от прямого угла.
Видео:Объём цилиндраСкачать
Вычисление объёма
Довольно часто для работы с цилиндрами требуется вычислить его объём. Это процедура в последнее время производится с применением вычислительной техники. Однако, чтобы провести такую процедуру необязательно использовать калькулятор и другие дополнительные методы решения поставленной задачи.
Сейчас существует несколько основных методов, которые позволяют произвести вычисление данного параметра. Это, по сути, универсальные формулы. Каждая из таких формул имеет свои входные параметры, отталкиваясь от которых и можно найти требуемое значение объёма. Это позволяет достигнуть ряда положительных моментов в расчётах.
- Значительно сокращается время для осуществления операций подсчёта объёма.
- Уменьшается вероятность того что может быть совершена ошибка в расчётах
- Требуется для вычисления ограниченное число параметров, знание которых и даёт возможность достигать результата.
Читайте также: Прокладка главного блока цилиндров
Видео:Видеоурок по математике "Цилиндр"Скачать
Исходные данные
Производя вычисление такого параметра, как объём, необходимо помнить, что требуется первоначальное знание параметра, который и будет исходным данным для такой процедуры.
Необходимо иметь значение высоты. Это расстояние от нижнего и верхнего основания фигуры. При этом в зависимости от типа она может определяться по-разному. В ситуации прямоугольного цилиндра высота соответствует расстоянию между основаниями фигуры. Если же он относится к наклонному типу, то расстояние будет вычисляться иным путём. Это параметр, который соответствует длине прямой проведённой под прямым углом от одного основания до плоскости, на которой лежит второе основание.
После определения такого значения можно приступать к вычислению объёма.
Видео:Объём цилиндраСкачать
Методы расчёта
Существует два основных метода, которые позволяют производить вычисление такого параметра.
- Метод вычисления объёма цилиндра на основе высоты геометрической фигуры. Этот метод является универсальным средством и может быть использован для фигур любого типа как прямоугольных, так и наклонных цилиндров. Дополнительно к значению высоты в данном способе следует знать и площадь основания. Если остановиться подробнее на данном параметре, то надо отметить что основанием является круг. Поэтому вычисление площади круга происходит на основе радиуса. Таким образом, вторым параметром в данном методе должен выступать радиус основания цилиндра. Тогда площадь определяется согласно стандартной формуле.
В данной формуле принято следующее обозначение при помощи переменных:
- П – это параметр, обозначающий соотношение между длиной и радиусом окружности, равный 3,1415928.
- R – Радиус окружности, лежащий в основании цилиндра.
- S — Площадь основания фигуры.
Вычисление непосредственно объёма цилиндра производится на основе стандартной формулы.
В данной формуле принято следующее обозначение при помощи переменных:
- S – Площадь основания цилиндра, имеющего форму круга.
- h – Высота геометрической фигуры.
- V – объём цилиндра.
- Вторым методом, позволяющим произвести вычисление объёма данной фигуры, является соотношение таких параметров, как высота цилиндра и радиуса его основания. По сути, данная формула является преобразованной формулой первого метода. В ней нет разделения на промежуточные этапы подсчёта параметров. Сразу же включены все математические операции.
Таким образом, в ней одновременно производится подсчёт площади круга и объёма цилиндра.
Приведём формулу расчёта объёма цилиндра для данного метода.
В данной формуле принято следующее обозначение при помощи переменных:
- П – это параметр, обозначающий соотношение между длиной и радиусом окружности, равный 3,1415928.
- R – Радиус окружности, лежащий в основании цилиндра.
- h – Высота геометрической фигуры.
- V – Объём цилиндра.
Видео:КАК посчитать сколько литров воды в АКВАРИУМЕ???Скачать
Объём в литрах
Если говорить о нахождении объёма такой геометрической фигуры, то надо отметить что это задача не только для школьной программы. Используя приведенные ранее методы, есть возможность производить расчёты объёма ёмкости неизвестного типа.
К примеру, есть возможность вычислить объём ёмкости для полива на садовом участке. Однако есть и особенность при проведении подсчёта. Надо все значения подставлять в формулы в метрах. В результате проведения расчётом получается значение, которое будет измеряться в кубических метрах.
Однако, принято при расчётах поливных ёмкостей пользоваться измерениями в литрах. Для этого необходимо произвести пересчёт полученного значения объёма в литры. Это происходит на основе простого соотношения, где один кубический метр равняется 1000 литрам жидкости.
Если вычисления происходят в сантиметрах, то и результат будет в кубических сантиметрах. Тогда надо понимать, что между кубическими сантиметрами и литрами существует чёткое соотношение. Перевод происходит путём деления полученного значения объёма на 1000. После этого данные будут представлены в литрах.
Если необходимо первоначально перевести полученный в результате вычислений параметр из кубических сантиметров в кубические метры, то достаточно произвести операцию деления. Объём делится на 1000000. Это связано с тем, что кубический метр — это куб, у которого сторона равняется 100 сантиметрам. Поэтому объём в сантиметрах будет равен произведению 100*1000*100. Соответственно это будет 1000000 сантиметров кубических.
Видео:11 класс, 32 урок, Объем цилиндраСкачать
Видео
Посмотрите, как высчитать объем цилиндра и площадь его поверхности.
🎬 Видео
Как высчитать обьем воды в трубе ( Формула )Скачать
ОБЪЕМ ЦИЛИНДРА #shorts #егэ #огэ #математика #профильныйегэСкачать
Как найти объем. Принцип Кавальери | Ботай со мной #050 | Борис Трушин |Скачать
Объем цилиндра.Скачать
Объем цилиндра.Скачать
Вычисление объёма цилиндраСкачать
ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРАСкачать
Объем цилиндра. Практическая часть. 11 класс.Скачать
Лайфхаки ЕГЭ по математике: решения и ответы | Задание 8: цилиндр | Быстрая подготовка к ЕГЭСкачать