Как найти объем усеченного цилиндра

Авто помощник

Содержание
  1. Как рассчитать, вычислить объём цилиндра? Что нужно для этого?
  2. Объем цилиндра
  3. Формула для вычисления объема усеченного цилиндра
  4. Объем цилиндра
  5. Объем правильного цилиндра через радиус и высоту цилиндра
  6. Формулы и калькулятор для вычисления объема цилиндра через площадь основания и высоту цилиндра
  7. Формулы и калькулятор для вычисления объема цилиндра через диаметр основания
  8. Объем цилиндрической полости
  9. Поверхности цилиндра
  10. Сечения цилиндра
  11. Что такое объем
  12. Калькулятор развертки усеченного плоскостью цилиндра онлайн
  13. Обозначения
  14. Введите радиус или диаметр *:
  15. Введите высоты * и (или) угол:
  16. Округление:
  17. Построение развёртки:
  18. Графики
  19. Формулы
  20. Объем цилиндра — формулы и примеры расчетов
  21. Как найти объем цилиндра
  22. Формула объема цилиндра через диаметр
  23. Объем полого цилиндра
  24. Примеры задач с решениями
  25. Задача №1
  26. Задача №2
  27. Задача №3
  28. Все формулы объемов геометрических тел
  29. 1. Расчет объема куба
  30. 2. Найти по формуле, объем прямоугольного параллелепипеда
  31. 3. Формула для вычисления объема шара, сферы
  32. 4. Как вычислить объем цилиндра ?
  33. 5. Как найти объем конуса ?
  34. 7. Формула объема усеченного конуса
  35. 8. Объем правильного тетраэдра
  36. 9. Объем правильной четырехугольной пирамиды
  37. 10. Объем правильной треугольной пирамиды
  38. 11. Найти объем правильной пирамиды

Видео:Объём цилиндраСкачать

Объём цилиндра

Как рассчитать, вычислить объём цилиндра? Что нужно для этого?

Цилиндром называется геометрическое тело, образованное путем вращения прямоугольника вокруг его стороны (преимущественно большей). Круги, лежащие в основании, конгруэнтные – соразмерные, равные.

Поверхность тела имеет криволинейную форму – цилиндрическую. Рассмотрим, как рассчитать объем цилиндра: полного и усеченного при наличии разных исходных данных. Развертка геометрического тела представлена:

  • прямоугольником с шириной, равной высоте геометрического тела (H);
  • длиной, равной образующей или радиусу нижней поверхности: c = πD = 2πr.

Как найти объем усеченного цилиндра

Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Объем цилиндра

Объемом называется характеристика ограниченного геометрическим телом пространства. Показывает, сколько места занимает тело или сколько жидкости внутрь него можно залить. Близкие по значению слова – емкость, вместимость.

Существует несколько формул, позволяющих найти объем цилиндра; какая подойдет, зависит от исходной информации.

  • π – число «Пи», равное приблизительно 3,1415;
  • r – радиус круга;
  • h – высота призмы или длина стороны прямоугольника, вокруг которой он вращался для образования цилиндра.

V=\pi \frac или \frac \pi d^2h, где:

  • d – диаметр геометрического тела.

Как найти объем усеченного цилиндра

Рассмотрим, как вычислить объем цилиндра на практике, если известны его:

  • радиус: r = 5 см;
  • высота: h = 13 см.

Подставляем значения в формулу:

V = π * 5 2 * 13 = π * 25 * 13 = 325 π.

Если нужно реальное число, вместо π в формулу подставим его округленное значение 3,1415.

V = 325 * 3,1415 ≈ 1020,98 ≈ 1021 см 3 .

В случае, когда дан диаметр круга, его придется разделить на два для получения радиуса: r= \frac d или разделить на четыре после поднесения к квадрату; r= (\frac d) =\frac d^2.

Видео:Цилиндр - расчёт площади, объёма.Скачать

Цилиндр - расчёт площади, объёма.

Формула для вычисления объема усеченного цилиндра

Усеченным называется цилиндр, часть которого отрезана плоскостью, пролегающей не параллельно нижней плоскости.

Как найти объем усеченного цилиндра

Формула объема усеченного цилиндра следующая:

здесь h1 b h2 – наименьшая и наибольшая высоты геометрического тела.

Как найти объем усеченного цилиндра

После подстановки значений получится выражение:

Первый: воспользуемся формулой V= \pi r^2 *\frac . Для этого определим радиус нижней плоскости.

r = \frac d= \frac 10=5 см.
V=\pi r^2 *\frac = \pi *5^2* \frac = 25 \pi * 20 = 500 \pi \approx 1570,75 см 3 .

Читайте также: Технологическая карта по изготовлению цилиндра

Второе решение – подставим диаметр в формулу:

V = \pi \frac * \frac = \pi *\frac * \frac = \pi * \frac * \frac = 500 \pi \approx 1570,75 см 3 .

Зная высоту и радиус или диаметр основания тела, его вместительность высчитывается в несколько действий.

Видео:11 класс, 32 урок, Объем цилиндраСкачать

11 класс, 32 урок, Объем цилиндра

Объем цилиндра

Объем цилиндра, формулы и калькулятор для вычисления объема цилиндра и площади его поверхностей, а также необходимая теория о характеристиках цилиндра.

Видео:Задание 38. Как начертить ИЗОМЕТРИЮ усеченного цилиндраСкачать

Задание 38. Как начертить ИЗОМЕТРИЮ усеченного цилиндра

Объем правильного цилиндра через радиус и высоту цилиндра

Видео:Объем цилиндра.Скачать

Объем цилиндра.

Формулы и калькулятор для вычисления объема цилиндра через площадь основания и высоту цилиндра

Как найти объем усеченного цилиндра

Видео:Объем цилиндраСкачать

Объем цилиндра

Формулы и калькулятор для вычисления объема цилиндра через диаметр основания

Как найти объем усеченного цилиндра

Видео:11 класс. Геометрия. Объем цилиндраСкачать

11 класс. Геометрия. Объем цилиндра

Объем цилиндрической полости

Как найти объем усеченного цилиндра

Объем полости в виде цилиндра равен объему цилиндра, который извлечен из данной полости для ее образования. То есть для вычисления цилиндрической полости можно воспользоваться формулами и калькулятором для расчета простого правильного цилиндра в зависимости от известных исходных данных.

На картинке продемонстрирована цилиндрическая полость, образованная в теле путем извлечения из него цилиндра. Объем извлеченного цилиндра и объем образованной полости равны.

Нужно отметить один важный момент. Несмотря на равенство объемов извлеченного цилиндра и образованной полости, площади поверхностей данных объектов будут отличаться, так как у образованной цилиндрической полости отсутствует верхняя поверхность. То есть суммарная площадь поверхности образованной цилиндрической полости будет меньше суммарной площади извлеченного цилиндра на одну площадь основания цилиндра.

Правильный цилиндр – это цилиндр, где угол между образующими боковой поверхности и основанием цилиндра равен 90 градусов.

Неправильный или наклонный цилиндр – это цилиндр, где угол между образующими боковой поверхности и основанием цилиндра отличается от 90 градусов.

Рассмотрим правильный цилиндр.

Цилиндр – это тело, образованное вращением прямоугольника вокруг одной из его сторон. Тело цилиндра ограничено двумя кругами, называемыми основанием цилиндра и боковой цилиндрической поверхностью, которая в развертке представляет собой прямоугольник

Цилиндр можно так же описать как тело, состоящее из двух равных кругов, не лежащих в одной плоскости и параллельных между собой, и отрезков, соединяющих все точки одной окружности, с соответствующими точками другой окружности. Данные отрезки называются образующими цилиндра.

Радиус основания цилиндра, является радиусом цилиндра.

Ось цилиндра – это прямая, соединяющая центра оснований цилиндра.

Высота цилиндра – это перпендикуляр, опущенный от одного основания цилиндра к другому.

Видео:Усеченный конус. 11 класс.Скачать

Усеченный конус. 11 класс.

Поверхности цилиндра

Как найти объем усеченного цилиндра

Наружную поверхность цилиндра можно условно разделить на три отдельные поверхности: верхняя, нижняя и боковая.

Верхняя и нижняя поверхности цилиндра имеют форму круга и равны между собой.

Боковая поверхность цилиндра имеет форму прямоугольника. Чтобы это наглядно представить, возьмем боковую наружную поверхность цилиндра и мысленно сделаем вертикальный разрез по образующей цилиндра. Далее развернем поверхность на плоскость. В результате увидим, что боковая поверхность имеет форму прямоугольника (см. на картинке).

Видео:усеченный цилиндр-ортогональные проекции-изометрия-разверткаСкачать

усеченный цилиндр-ортогональные проекции-изометрия-развертка

Сечения цилиндра

Как найти объем усеченного цилиндра

Как найти объем усеченного цилиндра

При сечении цилиндра плоскостью, проходящей через оба основания цилиндра под углом в 90 градусов, всегда получатся прямоугольная фигура .

Как найти объем усеченного цилиндра

При сечении цилиндра плоскостью, проходящей через оба основания цилиндра под углом отличным от 90 градусов, получатся фигура, похожая на прямоугольник , но две боковые стороны которого будут являться кривыми линиями.

Читайте также: Инструмент для нанесения хона в цилиндрах

Как найти объем усеченного цилиндра

Если секущая поверхность проходит параллельно основаниям цилиндра, то сечением будет круг .

Как найти объем усеченного цилиндра

Если секущая поверхность проходит через боковую поверхность, но при этом не параллельна основанию цилиндра, то в сечении получается эллипс .

Как найти объем усеченного цилиндра

Если секущая поверхность проходит через одно основание цилиндра и боковую поверхность, то в сечение будет фигура в виде половины эллипса .

Видео:Объём цилиндраСкачать

Объём цилиндра

Что такое объем

Объем тела (геометрической фигуры) – это количественная характеристика, характеризующая количество пространства, занимаемого телом. Объем выражается в кубических единицах измерения, например: мм 3 , см 3 , мл 3 .

Формула вычисления объема цилиндра часто применяются при расчете массы различных цилиндров, например, прутков, заготовок и т.п. Для вычисления массы, необходимо вычисленный объем цилиндра умножить на плотность материала из которого цилиндр.

Так же, вычислить объём цилиндра иногда требуется для определения полости в виде цилиндра (цилиндрическая полость). В данном случае объём полости будет равен объёму цилиндра, который полностью занимает эту полость.

Объем и площадь других видов цилиндров рассмотрен в статьях:

Видео:Как найти объем вписанного конуса? 🔍 #умскул_профильнаяматематика #умскул #никитасалливанСкачать

Как найти объем вписанного конуса? 🔍 #умскул_профильнаяматематика #умскул #никитасалливан

Калькулятор развертки усеченного плоскостью цилиндра онлайн

Как найти объем усеченного цилиндра

Видео:Объем цилиндра.Скачать

Объем цилиндра.

Обозначения

  • R — радиус основания цилиндра;
  • D — диаметр основания цилиндра;
  • h — средняя высота усечённого цилиндра;
  • h1 — наименьшая высота усечённого цилиндра;
  • h2 — наибольшая высота усечённого цилиндра;
  • α — угол сечения, град.
  • X1 .. n — координаты для построения развёртки по оси X;
  • Y1 .. n — координаты для построения развёртки по оси Y;

Числовые значения в таблице заполняются числом (5; 5.16; -3.12), либо математическим выражением (5/7; (1-5)*2.13)

Введите радиус или диаметр *:

Введите высоты * и (или) угол:

Без макс. и мин. высоты можно посчитать только площади боковой поверхности и основания и объём

Или введите одну из высот и угол сечения (рис.)

Округление:

Построение развёртки:

Видео:Объем цилиндра. Практическая часть. 11 класс.Скачать

Объем цилиндра. Практическая часть. 11 класс.

Графики

Чертится развертка усеченного плоскостью цилиндра, как показано на рисунке:

Как найти объем усеченного цилиндра

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Формулы

Формула для вычисления значений Y:

Yi = D * tg(α) * sin (i * (180 / n)) , здесь: i — номер точки, α — угол сечения, n — количество точек развертки, D — диаметр цилиндра;

Формула для вычисления значений X:

Xi = ((π * R 2 ) / n) * i , здесь: i — номер точки, α — угол сечения, n — количество точек развертки, R — радиус цилиндра, π — число Пи (прим. 3.14);

Видео:Стереометрия на ЕГЭ по математике. Вычисление объема части цилиндра.Скачать

Стереометрия на ЕГЭ по математике. Вычисление объема части цилиндра.

Объем цилиндра — формулы и примеры расчетов

Как найти объем цилиндра? Любой грамотный человек обязан отличить радиус от диаметра, знать, что такое высота, помнить основные формулы геометрии и уметь рассчитать объем шара или куба.

Практическое использование геометрических формул в повседневной жизни очень высоко. Рассчитать объем в кубических метрах перевозимого груза транспортной компанией, пропускную способность трубы под домом и многое другое — во всех этих и подобных им случаях поможет геометрия.

Видео:Задача про ЦИЛИНДР / Как найти объем детали? / Профиль ЕГЭСкачать

Задача про ЦИЛИНДР / Как найти объем детали? / Профиль ЕГЭ

Как найти объем цилиндра

При упоминании о цилиндре на ум приходит классический головной убор. Кроме него в окружении можно встретить много разновидностей этой фигуры.

В теории — это тело, которое ограничено цилиндрической поверхностью и пересекающими её параллельными плоскостями.

Как найти объем усеченного цилиндра

Рассчитать его объем возможно следующим образом:

Как видите, формула проста и прозрачна, и если обывателю нужно, как вариант, определить объем цистерны воды, можно смело ее использовать. Хотя, если возникают сомнения в правильности расчетов, для этой цели можно использовать калькулятор и определить объем онлайн.

Читайте также: Тормозной цилиндр не срабатывает

Видео:Объем усеченного конуса. Практическая часть. 11 класс.Скачать

Объем усеченного конуса. Практическая часть. 11 класс.

Формула объема цилиндра через диаметр

К сожалению, случается, что при расчете объема фигуры известны не все размеры. Так, например, может не быть данных о радиусе.

Как найти объем усеченного цилиндра

В данном случае, если знать диаметр или иметь возможность его измерить, можно воспользоваться следующей формулой:

Видео:Как найти объем. Принцип Кавальери | Ботай со мной #050 | Борис Трушин |Скачать

Как найти объем. Принцип Кавальери | Ботай со мной #050 | Борис Трушин |

Объем полого цилиндра

Расчет полого цилиндра нужен, когда необходимо, например, рассчитать вес полой трубы. Ее масса равна произведению плотности материала и объема.

Как найти объем усеченного цилиндра

Видео:Объем конуса. Объем усеченного конуса.Скачать

Объем конуса. Объем усеченного конуса.

Примеры задач с решениями

Задача №1

Высота бочки с водой равна 3 метрам, радиус составляет 0,75 метра. Рассчитать в литрах, сколько нужно жидкости, чтобы заполнить емкость наполовину?

Как найти объем усеченного цилиндра

Задача №2

В цехе подготовили заготовку цилиндра. Диаметр основания равен высоте и составляет 20 см. Нужно найти объем заготовки.

Как найти объем усеченного цилиндра

Задача №3

На производстве нужно изготовить две трубы с двумя равными поверхностями. Внешний радиус первой трубы равен 5см, а внутренний 4 см, высота 200 см. Внутренний радиус второй равен 3 см.

Сколько понадобится материала для изготовления труб?

Как найти объем усеченного цилиндра

Все формулы объемов геометрических тел

1. Расчет объема куба

Как найти объем усеченного цилиндра

a — сторона куба

Формула объема куба, (V):

Как найти объем усеченного цилиндра

2. Найти по формуле, объем прямоугольного параллелепипеда

Как найти объем усеченного цилиндра

a , b , c — стороны параллелепипеда

Еще иногда сторону параллелепипеда, называют ребром.

Формула объема параллелепипеда, (V):

Как найти объем усеченного цилиндра

3. Формула для вычисления объема шара, сферы

Как найти объем усеченного цилиндра

R радиус шара

По формуле, если дан радиус, можно найти объема шара, (V):

Как найти объем усеченного цилиндра

4. Как вычислить объем цилиндра ?

Как найти объем усеченного цилиндра

h — высота цилиндра

r — радиус основания

По формуле найти объема цилиндра, есди известны — его радиус основания и высота, (V):

Как найти объем усеченного цилиндра

5. Как найти объем конуса ?

Как найти объем усеченного цилиндра

R — радиус основания

H — высота конуса

Формула объема конуса, если известны радиус и высота (V):

Как найти объем усеченного цилиндра

7. Формула объема усеченного конуса

Как найти объем усеченного цилиндра

r — радиус верхнего основания

R — радиус нижнего основания

h — высота конуса

Формула объема усеченного конуса, если известны — радиус нижнего основания, радиус верхнего основания и высота конуса (V ):

Как найти объем усеченного цилиндра

8. Объем правильного тетраэдра

Как найти объем усеченного цилиндра

Правильный тетраэдр — пирамида у которой все грани, равносторонние треугольники.

а — ребро тетраэдра

Формула, для расчета объема правильного тетраэдра (V):

Как найти объем усеченного цилиндра

9. Объем правильной четырехугольной пирамиды

Пирамида, у которой основание квадрат и грани равные, равнобедренные треугольники, называется правильной четырехугольной пирамидой.

Как найти объем усеченного цилиндра

a — сторона основания

h — высота пирамиды

Формула для вычисления объема правильной четырехугольной пирамиды, (V):

Как найти объем усеченного цилиндра

10. Объем правильной треугольной пирамиды

Пирамида, у которой основание равносторонний треугольник и грани равные, равнобедренные треугольники, называется правильной треугольной пирамидой.

Как найти объем усеченного цилиндра

a — сторона основания

h — высота пирамиды

Формула объема правильной треугольной пирамиды, если даны — высота и сторона основания (V):

Как найти объем усеченного цилиндра

11. Найти объем правильной пирамиды

Пирамида в основании, которой лежит правильный многоугольник и грани равные треугольники, называется правильной.

Как найти объем усеченного цилиндра

h — высота пирамиды

a — сторона основания пирамиды

n — количество сторон многоугольника в основании

Формула объема правильной пирамиды, зная высоту, сторону основания и количество этих сторон (V):

Поделиться или сохранить к себе:
Технарь знаток