- Нахождение площади правильной призмы: формула и задачи
- Формула площади правильной призмы
- 1. Общая формула
- 2. Площадь правильной треугольной призмы
- 3. Площадь правильной четырехугольной призмы
- 4. Площадь правильной шестиугольной призмы
- Примеры задач
- Найдите площадь боковой поверхности правильной
- Как найти площадь боковой поверхности призмы вписанной в цилиндр
- 🎥 Видео
Видео:Геометрия Найдите площадь боковой поверхности правильной треугольной призмы, описанной околоСкачать
Нахождение площади правильной призмы: формула и задачи
В данной публикации мы рассмотрим, как можно вычислить площадь поверхности правильной призмы разных видов (треугольной, четырехугольной и шестиугольной), а также, разберем примеры решения задач для закрепления материала.
Правильная призма – это прямая призма, основанием которой является правильный многоугольник. А прямой фигура является в том случае, если ее боковые грани перпендикулярны основаниям.
Видео:ЕГЭ 2022 математика задача 4 вариант 2Скачать
Формула площади правильной призмы
1. Общая формула
Площадь (S) полной поверхности призмы равна сумме площади ее боковой поверхности и двух площадей основания.
Площадь боковой поверхности прямой призмы равняется произведению периметра ее основания на высоту.
Формула периметра и площади основания правильной призмы зависит от вида многогранника. Ниже мы рассмотрим самые популярные виды.
2. Площадь правильной треугольной призмы
Основание: равносторонний треугольник.
Площадь | Формула |
основание | » data-order=»«> |
боковая поверхность | |
полная | » data-order=»«> |
3. Площадь правильной четырехугольной призмы
Основание: квадрат.
Площадь | Формула |
основание | |
боковая поверхность | |
полная |
Примечание: Если высота правильной четырехугольной призмы равняется длине стороны ее основания, значит мы имеем дело с кубом, площадь одной грани которого равна a 2 . А так как все шесть граней куба равны, то полная площадь его поверхности равняется 6a 2 .
4. Площадь правильной шестиугольной призмы
Основание: правильный шестиугольник
Читайте также: Обрыв цепи управления форсункой все цилиндры
Площадь | Формула |
основание | » data-order=»«> |
боковая поверхность | |
полная | » data-order=»«> |
Видео:Площадь поверхности призмы. 11 класс.Скачать
Примеры задач
Задание 1:
Сторона правильной треугольной призмы равна 6 см, а ее высота – 8 см. Найдите полную площадь поверхности фигуры.
Решение:
Воспользуемся подходящей формулой, подставив в нее известные нам значения:
Задание 2:
Площадь полной поверхности правильной шестиугольной призмы составляет 400 см 2 . Найдите ее высоту, если известно, что сторона основания равна 5 см.
Решение:
Выведем выражение для нахождения высоты призмы из формулы ее полной площади:
Видео:11 класс, 15 урок, Площадь поверхности цилиндраСкачать
Найдите площадь боковой поверхности правильной
27065. Найдите площадь боковой поверхности правильной треугольной призмы, описанной около цилиндра, радиус основания которого равен √3, а высота равна 2.
Площадь боковой поверхности данной призмы равна сумме площадей всех боковых граней. Так как дана правильная треугольная призма, то все три грани являются прямоугольниками, площади которых равны.
Для нахождения площади боковой грани необходимо знать её высоту и длину ребра основания. Высота дана. Найдём длину ребра основания. Рассмотрим проекцию (вид сверху:
Из прямоугольного треугольника АОС можем найти АС. По определению тангенса: Значит
Таким образом, сторона правильного треугольника выражается через радиус вписанной в него окружности как Значит площадь боковой поверхности будет равна: Ответ: 36
27066. Найдите площадь боковой поверхности правильной шестиугольной призмы, описанной около цилиндра, радиус основания которого равен √3, а высота равна 2.
Площадь боковой поверхности призмы равна произведению периметра снования и высоты. *Высота призмы равна высоте цилиндра. Вычислим сторону шестиугольника. Построим эскиз: Треугольник AOH равносторонний, Провели высоту OH, АН=НВ. Можем записать: Следовательно АВ=2. Таким образом, периметр шестиугольника равен 12, а искомая площадь 24 (периметр умножили на высоту призмы).
Читайте также: Рабочий цилиндр сцепления мтз 922
27107. Найдите площадь боковой поверхности правильной треугольной призмы, вписанной в цилиндр, радиус основания которого равен 2√3, а высота равна 2.
Площадь боковой поверхности призмы равна: Сторона правильного треугольника выражается через радиус описанной окружности как: Тогда площадь боковой поверхности призмы равна: Ответ: 36
27064. Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы.
Диаметр цилиндра равен стороне квадрата лежащего в основании, это 2. Тогда периметр квадрата равен 8. Площадь боковой поверхности равна 8∙1=8.
Видео:Видеоурок по математике "Цилиндр"Скачать
Как найти площадь боковой поверхности призмы вписанной в цилиндр
Через среднюю линию основания треугольной призмы, проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности призмы, если площадь боковой поверхности отсеченной треугольной призмы равна 37.
Боковые грани исходной призмы вдвое больше соответствующих боковых граней отсеченной призмы, поэтому площадь боковой поверхности исходной призмы равна 74.
Правильная четырехугольная призма описана около цилиндра, радиус основания которого равен 2. Площадь боковой поверхности призмы равна 48. Найдите высоту цилиндра.
Площадь боковой поверхности прямой призмы равна произведению периметра основания на боковое ребро. Боковое ребро равно высоте цилиндра. В основании призмы лежит квадрат, его сторона равна диаметру вписанного круга. Поэтому
Поскольку по условию площадь боковой поверхности равна 48, искомая высота равна 3.
Правильная четырехугольная призма описана около цилиндра, радиус основания которого равен 5. Площадь боковой поверхности призмы равна 40. Найдите высоту цилиндра.
Площадь боковой поверхности прямой призмы равна произведению периметра основания на боковое ребро. Боковое ребро равно высоте цилиндра. В основании призмы лежит квадрат, его сторона равна диаметру вписанного круга. Поэтому
Поскольку по условию площадь боковой поверхности равна 40, искомая высота равна 1.
Правильная четырехугольная призма описана около цилиндра, радиус основания которого равен 6. Площадь боковой поверхности призмы равна 48. Найдите высоту цилиндра.
Читайте также: Нахождение точек в аксонометрии цилиндр
Площадь боковой поверхности прямой призмы равна произведению периметра основания на боковое ребро. Боковое ребро равно высоте цилиндра. В основании призмы лежит квадрат, его сторона равна диаметру вписанного круга. Поэтому
Поскольку по условию площадь боковой поверхности равна 48, искомая высота равна 1.
Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы.
Высота призмы равна высоте цилиндра, а сторона ее основания равна диаметру цилиндра. Боковые грани призмы — прямоугольники со сторонами 1 и 2. Поэтому площадь боковой поверхности 4 · 1 · 2 = 8.
Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы.
Высота призмы равна высоте цилиндра, а сторона ее основания равна диаметру цилиндра. Боковые грани призмы — прямоугольники со сторонами 1 и 2. Поэтому площадь боковой поверхности 4 · 1 · 2 = 8.
Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 5 и 12, боковое ребро призмы равно 8. Найдите площадь боковой поверхности призмы.
С помощью теоремы Пифагора найдем гипотенузу основания:
Площадь боковой поверхности равна
Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 9 и 40, боковое ребро призмы равно 50. Найдите площадь боковой поверхности призмы.
С помощью теоремы Пифагора найдем гипотенузу основания:
Площадь боковой поверхности равна
В треугольной призме две боковые грани перпендикулярны. Их общее ребро равно 15 и отстоит от других боковых ребер на 8 и 15. Найдите площадь боковой поверхности этой призмы.
Площадь боковой поверхности призмы можно найти по формуле где — периметр перпендикулярного сечения, а — длина бокового ребра.
Перпендикулярным сечением призмы будет прямоугольный треугольник с катетами 8 и 15. Гипотенузу его можно найти по теореме Пифагора, она равна 17. Тогда
Следовательно, площадь боковой поверхности призмы равна
🎥 Видео
Шар вписан в цилиндр. Площадь поверхности шара равна 78. Найдите площадь полной поверхности цилиндраСкачать
#130. Задание 8: комбинация телСкачать
Площадь поверхности призмы. Практическая часть. 11 класс.Скачать
Площадь поверхности призмы. Практическая часть. 11 класс.Скачать
ЕГЭ, профильная математика, задание 3 (стереометрия)Скачать
Площадь полной поверхности призмыСкачать
Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шараСкачать
Призма и пирамида. Площадь и объем. Вебинар | Математика 10 классСкачать
Нахождение площади боковой поверхности цилиндраСкачать
60. Площадь поверхности цилиндраСкачать
Призма и цилиндр. Практическая часть. 11 класс.Скачать
06.04.23, 11 ЕГЭ профиль, геометрия, призма, пирамида, площадь боковой поверхности, цилиндрСкачать
ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРАСкачать
Сфера и шар. Сечение сферы. Вписанная и описанная сфераСкачать
КАК НАЙТИ ПЛОЩАДЬ БОКОВОЙ ПОВЕРХНОСТИ ПИРАМИДЫ?Скачать