Как найти площадь полной поверхности цилиндра описанного около параллелепипеда

Авто помощник

Видео:Шар вписан в цилиндр. Площадь поверхности шара равна 78. Найдите площадь полной поверхности цилиндраСкачать

Шар вписан в цилиндр. Площадь поверхности шара равна 78. Найдите площадь полной поверхности цилиндра

Полная площадь поверхности прямоугольного параллелепипеда

При изучении школьной математики часто встречаются задания, в которых требуется определить полную или боковую площадь поверхности прямоугольного или обычного параллелепипеда. Научимся это делать.

Для того, чтобы научиться вычислять площадь поверхности параллелепипеда необходимо представлять, что это такое.

Видео:Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шараСкачать

Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шара

Общие понятия

Изучим основные понятия. В дальнейших наших рассуждениях площадь будем обозначать латинской буквой S, угол между сторонами a и b будем обозначать как (ab).

Параллелепипедом в математике именуется четырехугольная призма, у которой все грани являются параллелограммами.

  1. Грань — одна из поверхностей пространственного тела.
  2. Параллелограмм — четырёхугольник с попарно параллельными противоположными сторонами.
  3. Поверхности параллелепипеда это сумма поверхностей всех его граней.
  4. Прямоугольный параллелепипед — пространственное тело у которого гранями являются прямоугольники.
  5. Прямоугольник — четырёхугольник у которого все углы прямые.
  6. Куб — пространственное тело у которого гранями являются квадраты.
  7. Квадрат — прямоугольник у которого все стороны равны между собой.
  8. Равными называются фигуры, совмещающиеся при наложении.

Как найти площадь полной поверхности цилиндра описанного около параллелепипеда

Видео:Параллелепипед описан около цилиндраСкачать

Параллелепипед описан около цилиндра

Нахождение площадей фигур

Рассмотрим, как находятся площади, могущие составлять грани параллелепипеда.

  1. Площадь квадрата равна произведению его стороны самой на себя. Формула площади квадрата имеет вид S = a*a = a^2.
  2. Прямоугольника — вычисляется с помощью умножения большей его стороны (длины) на меньшую его сторону (ширину). Формула площади прямоугольника имеет вид S = a*b.
  3. Параллелограмма — найти сложнее и имеется несколько различных способов. Наиболее часто в математике применяются формулы для нахождения с помощью стороны и опущенной на неё высоты или двух сторон и синуса угла между ними. Записываются они следующим образом: S = a*h, S = a*b*sin (ab).

Рассмотрим на примерах как найти площадь каждой из рассматриваемых нами фигур.

1. Длина стороны квадрата равна 1600 метров. Определим его площадь.

  • S = a*a, отсюда в искомом случае S = 1600*1600 = 2 560 000 метров квадратных.

2. Стороны прямоугольника равны 90 и 200 метров соответственно. Определим его S.

  • S = a*b, следовательно в нашем варианте получится S = 90*200 = 18 000 метров квадратных.

3. С параллелограммом рассмотрим два случая нахождения.

Сторона равна 300 метров, а опущенная на неё высота 250 метров. Тогда получится:

  • S = a*h = 300*250 = 75 000 метров квадратных.

Второй вариант — стороны равны 550 и 200 метров соответственно. Угол между ними 30 градусов. Имеем:

  • S = a*b*sin (ab) = 550*200*sin 30 = 110 000*0.5 = 55 000 квадратных метров.

Как видно из примеров, приведённых выше, никаких сложностей нет.

Как найти площадь полной поверхности цилиндра описанного около параллелепипеда

Видео:Шар вписан в цилиндр 5 задание проф. ЕГЭ по математикеСкачать

Шар вписан в цилиндр 5 задание проф. ЕГЭ по математике

Площадь поверхности параллелепипеда

Так как наши тела имеют три принципиально различных варианта, то каждый из них мы рассмотрим в отдельности. Учтём, что полной поверхностью является сумма площадей всех граней тела, а боковой — только боковых граней.

Видео:Объём цилиндраСкачать

Объём цилиндра

Площадь поверхности куба

Здесь все крайне просто — грани этой фигуры равны между собой, так что S = a*a*6.

Читайте также: Разница компрессии в одном цилиндре

На примере это выглядит следующим образом:

Сторона равна 88 сантиметров. Площадь полной поверхности?

При данных условиях имеем:

S = a*a*6 = 88*88*6 = 46 464 сантиметра квадратного.

Видео:#130. Задание 8: комбинация телСкачать

#130. Задание 8: комбинация тел

Площадь поверхности прямоугольного параллелепипеда

Здесь все так же довольно легко — нужно помнить, что противоположные грани равны. Таким образом, находим поверхность трёх различных граней, и каждую удваиваем. Формулы нахождения будут выглядеть следующим образом:

S = 2*(S1 + S2 + S3), где S1, S2, S3 площади всех граней соответственно.

Второй вариант S = 2*(a*b + a*c + b*c), где a, b, c соответствующие рёбра прямоугольного параллелепипеда.

Снова рассмотрим пример. Пусть рёбра прямоугольного параллелепипеда равняются 20, 30 и 40 метров. Площадь полной поверхности?

Имеем, S = 2*(a*b + a*c + b*c) = 2*(20*30 + 20*40 + 30*40) = 2*(600 + 800 + 1200) = 2*2600 = 5 200 квадратных метров.

Как видно, находить площадь прямоугольного параллелепипеда также совершенно несложно.

Видео:ЕГЭ математика СТЕРЕОМЕТРИЯ 8#5.18🔴Скачать

ЕГЭ математика СТЕРЕОМЕТРИЯ 8#5.18🔴

Поверхность параллелепипеда

Теперь рассмотрим случай когда заданное нам тело имеет вид простого параллелепипеда, его гранями являются обычные параллелограммы. Здесь, как и в предыдущем случае противоположные грани равны. Следовательно, определив поверхность трёх различных граней, мы сможем определить и полную поверхность. Значит, одна из формул опять-таки будет иметь вид:

  • S = 2*(S1 + S2 + S3), где S1, S2, S3 площади трёх различных граней соответственно. Запишем исходя из наших рассуждений, ещё две формулы:
  • S = 2*(a*h1 + b*h2 + c*h3), где a, b, c соответствующие рёбра параллелепипеда, а h1, h2, h3 опущенные на них высоты.
  • S = 2*(a*b*sin (ab) + a*c*sin (ac) + b*c*sin (bc)), где a, b, c соответствующие рёбра, а (ab), (ac), (bc) углы между ними.

Снова приведём пример:

  • a = 15, b = 25, c = 25, h1 = 10, h2 = 20, h3 = 15. Пл. полной поверхности? Согласно формуле получим:
  • S = 2*(a*h1 + b*h2 + c*h3) = 2*(15*10 + 25*20 + 25*15) = 2*(150 + 500 + 375) = 2*1025 = 2 050 миллиметров квадратных.

В некоторых заданиях требуется определение только площади боковой поверхности параллелепипеда. В таком случае чётко указывается, что является основанием и находится только суммарная пл. четырёх боковых граней. Все приведённые выше рассуждения остаются верными.

Как найти площадь полной поверхности цилиндра описанного около параллелепипеда

Видео:ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРАСкачать

ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРА

Заключение

Тщательно изучив все сказанное выше, можно отметить, что никакой особой сложности задача по определению площади параллелепипеда не вызывает. Нужно всего-навсего чётко представлять все данные в материале математические понятия, абсолютно точно выучить формулы, ну и, разумеется, уметь хорошо проводить арифметические действия.

Видео:Геометрия Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 4Скачать

Геометрия Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 4

Видео

Из видео вы узнаете, как находить площать прямоугольного параллелепипеда.

Видео:ПЛОЩАДЬ боковой поверхности ЦИЛИНДРАСкачать

ПЛОЩАДЬ боковой поверхности ЦИЛИНДРА

Как найти площадь полной поверхности цилиндра описанного около параллелепипеда

Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шара.

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.

Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 4. Объем параллелепипеда равен 16. Найдите высоту цилиндра.

В куб вписан шар радиуса 1. Найдите объем куба.

В основании прямой призмы лежит прямоугольный треугольник с катетами 6 и 8. Боковые ребра равны Найдите объем цилиндра, описанного около этой призмы.

В основании прямой призмы лежит квадрат со стороной 2. Боковые ребра равны Найдите объем цилиндра, описанного около этой призмы.

Цилиндр и конус имеют общие основание и высоту. Объём конуса равен 25. Найдите объём цилиндра.

Из единичного куба вырезана правильная четырехугольная призма со стороной основания 0,5 и боковым ребром 1. Найдите площадь поверхности оставшейся части куба.

Читайте также: Передние тормозные цилиндры веста

Цилиндр и конус имеют общие основание и высоту. Найдите объем конуса, если объем цилиндра равен 150.

Объём куба, описанного около сферы, равен 216. Найдите радиус сферы.

Конус описан около правильной четырехугольной пирамиды со стороной основания 4 и высотой 6. Найдите его объем, деленный на

Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?

В куб с ребром 3 вписан шар. Найдите объем этого шара, деленный на

Около куба с ребром описан шар. Найдите объем этого шара, деленный на

Вершина A куба с ребром 1,6 является центром сферы, проходящей через точку A1. Найдите площадь S части сферы, содержащейся внутри куба. В ответе запишите величину

Видео:Как запомнить площадь поверхности цилиндра #математикапрофиль #геометрияегэСкачать

Как запомнить площадь поверхности цилиндра #математикапрофиль #геометрияегэ

Площадь параллелепипеда

Видео:Геометрия Цилиндр описан около шара. Найдите объем шара, если известно, что объем цилиндра равен 60.Скачать

Геометрия Цилиндр описан около шара. Найдите объем шара, если известно, что объем цилиндра равен 60.

Найти площадь параллелепипеда, зная ребра

Как найти площадь полной поверхности цилиндра описанного около параллелепипеда

Видео:Площадь поверхности куба описанного около сферы равнаСкачать

Площадь поверхности куба  описанного около сферы равна

Формула нахождения полной площади параллелепипеда

Параллелепипед – это четырехугольная призма, в основании имеющая параллелограмм. Существуют готовые формулы для расчета боковой и полной площади поверхности фигуры, для которых необходимы лишь длины трех измерений параллелепипеда.

Видео:Площадь полной поверхности призмыСкачать

Площадь полной поверхности призмы

Общие понятия

Изучим основные понятия. В дальнейших наших рассуждениях площадь будем обозначать латинской буквой S, угол между сторонами a и b будем обозначать как (ab).

Параллелепипедом в математике именуется четырехугольная призма, у которой все грани являются параллелограммами.

  1. Грань — одна из поверхностей пространственного тела.
  2. Параллелограмм — четырёхугольник с попарно параллельными противоположными сторонами.
  3. Поверхности параллелепипеда это сумма поверхностей всех его граней.
  4. Прямоугольный параллелепипед — пространственное тело у которого гранями являются прямоугольники.
  5. Прямоугольник — четырёхугольник у которого все углы прямые.
  6. Куб — пространственное тело у которого гранями являются квадраты.
  7. Квадрат — прямоугольник у которого все стороны равны между собой.
  8. Равными называются фигуры, совмещающиеся при наложении.

Как найти площадь полной поверхности цилиндра описанного около параллелепипеда

Видео:11 класс, 15 урок, Площадь поверхности цилиндраСкачать

11 класс, 15 урок, Площадь поверхности цилиндра

Площадь поверхности куба

Здесь все крайне просто — грани этой фигуры равны между собой, так что S = a*a*6.

На примере это выглядит следующим образом:

Сторона равна 88 сантиметров. Площадь полной поверхности?

При данных условиях имеем:

S = a*a*6 = 88*88*6 = 46 464 сантиметра квадратного.

Видео:Найти площадь квадрата описанного около окружности радиуса 19Скачать

Найти площадь квадрата описанного около окружности радиуса 19

Пример задачи

Вычислите площадь поверхности прямоугольного параллелепипеда, если известно, что его длина равна 6 см, ширина – 4 см, а высота – 7 см.

Решение:
Воспользуемся формулой выше, подставив в нее известные значения:
S = 2 ⋅ (6 см ⋅ 4 см + 6 см ⋅ 7 см + 4 см ⋅ 7 см) = 188 см 2 .

Видео:Нахождение площади боковой поверхности цилиндраСкачать

Нахождение площади боковой поверхности цилиндра

Нахождение площадей фигур

Рассмотрим, как находятся площади, могущие составлять грани параллелепипеда.

  1. Площадь квадрата равна произведению его стороны самой на себя. Формула площади квадрата имеет вид S = a*a = a^2.
  2. Прямоугольника – вычисляется с помощью умножения большей его стороны (длины) на меньшую его сторону (ширину). Формула площади прямоугольника имеет вид S = a*b.
  3. Параллелограмма – найти сложнее и имеется несколько различных способов. Наиболее часто в математике применяются формулы для нахождения с помощью стороны и опущенной на неё высоты или двух сторон и синуса угла между ними. Записываются они следующим образом: S = a*h, S = a*b*sin (ab).

Рассмотрим на примерах как найти площадь каждой из рассматриваемых нами фигур.

1. Длина стороны квадрата равна 1600 метров. Определим его площадь.

  • S = a*a, отсюда в искомом случае S = 1600*1600 = 2 560 000 метров квадратных.

2. Стороны прямоугольника равны 90 и 200 метров соответственно. Определим его S.

  • S = a*b, следовательно в нашем варианте получится S = 90*200 = 18 000 метров квадратных.

Читайте также: Диагональ сечения цилиндра параллельного оси равна 8 3 она наклонена

3. С параллелограммом рассмотрим два случая нахождения.

Сторона равна 300 метров, а опущенная на неё высота 250 метров. Тогда получится:

  • S = a*h = 300*250 = 75 000 метров квадратных.

Второй вариант — стороны равны 550 и 200 метров соответственно. Угол между ними 30 градусов. Имеем:

  • S = a*b*sin (ab) = 550*200*sin 30 = 110 000*0.5 = 55 000 квадратных метров.

Как видно из примеров, приведённых выше, никаких сложностей нет.

Как найти площадь полной поверхности цилиндра описанного около параллелепипеда

Видео:60. Площадь поверхности цилиндраСкачать

60. Площадь поверхности цилиндра

Как найти площадь боковой поверхности прямоугольного параллелепипеда

Необходимо различать прямоугольный и прямой параллелепипед. Основание прямой фигуры может представлять собой любой параллелограмм. Площадь такой фигуры необходимо вычислять по другим формулам.

Как найти площадь полной поверхности цилиндра описанного около параллелепипеда

Сумма S боковых граней прямоугольного параллелепипеда вычисляется по простой формуле P*h, где P – периметр и h – высота. На рисунке видно, что у прямоугольного параллелепипеда противоположные грани равны, а высота h совпадает с длиной ребер, перпендикулярных основанию.

Видео:ЕГЭ Математика Задание 8#27067Скачать

ЕГЭ Математика Задание 8#27067

Найти площадь поверхности параллелепипеда

Параллелепипед – это призма, основанием которой служит параллелограмм. В параллелепипеде противоположные грани равны и параллельны. Диагонали его пересекаются в одной точке, которая лежит на оси симметрий, и делятся ею пополам.

  • Прямой параллелепипед – параллелепипед, боковые рёбра которого перпендикулярны к основаниям.
  • Наклонный параллелепипед – параллелепипед, боковые рёбра которого не перпендикулярны к основаниям.
  • Прямоугольный – прямой параллелепипед, основания которого – прямоугольники.

Площадь полной поверхности параллелепипеда равна сумме площадей её боковых поверхностей и площади основания:

S = 2 cdot (a cdot b + b cdot c + a cdot c)

  1. Найдите площадь поверхности прямоугольного параллелепипеда, если его стороны равны 2, 3, 4 см
    Посмотреть решение

По формуле площади поверхности прямоугольного параллелепипеда:

S = 2 cdot ( a cdot b + a cdot c + b cdot c)

S = 2 cdot ( 2 cdot 3 + 2 cdot 4 + 3 cdot 4) = 52 см^2

S = 2 cdot (a cdot b + a cdot c + b cdot c)

S = 2 cdot (3 cdot 6 + 3 cdot 5 + 5 cdot 6)

S = 2 cdot c cdot (a + b) , отсюда: c = frac = 3 см

По формуле площади поверхности прямоугольного параллелепипеда находим площадь:

S = 2 cdot (a cdot b + a cdot c + b cdot c)

S = 2 cdot (1 cdot 2 + 1 cdot 3 + 2 cdot 3) = 22 см^2

Найдем сторону c: V = a cdot b cdot c , отсюда: c = frac = 5 см $

S = 2 cdot (a cdot b + a cdot c + b cdot c)

S = 2 cdot (2 cdot 2 + 2 cdot 5 + 2 cdot 5) = 48 см^2

d^2 = a^2 cdot b^2 cdot c^2 , отсюда:

По формуле для площади поверхности прямоугольного параллелепипеда находим площадь:

S = 2 cdot (a cdot b + a cdot c + b cdot c)

S = 2 cdot (2 cdot 4 + 2 cdot 4 + 4 cdot 4) = 64 см^2

Ответ S = 64 см^2

Видео:Сечение цилиндра Найти площадь полной поверхности цилиндраСкачать

Сечение цилиндра Найти площадь полной поверхности цилиндра

Пример решения задачи

Приведенные формулы могут использоваться в ходе поиска диагоналей параллелепипеда.

Как найти площадь полной поверхности цилиндра описанного около параллелепипеда

Для нахождение B1D достаточно применить теорему Пифагора: сумма квадратов катетов равна квадрату гипотенузы.

Формула вычисления площади

Площадь (S) поверхности прямоугольного параллелепипеда вычисляется следующим образом:

Как найти площадь полной поверхности цилиндра описанного около параллелепипеда

Формула получена следующим образом:

  1. Гранями прямоугольного параллелепипеда являются прямоугольники, причем противоположные грани равны между собой:
    • два основания: со сторонами a и b;
    • четыре боковые грани: со стороной a/b и высотой c.
  2. Сложив площади всех граней, каждая из которых равна произведению сторон разной длины, получаем: S = ab + ab + bc + bc + ac + ac = 2 (ab + bc + ac).

Заключение

Тщательно изучив все сказанное выше, можно отметить, что никакой особой сложности задача по определению площади параллелепипеда не вызывает. Нужно всего-навсего чётко представлять все данные в материале математические понятия, абсолютно точно выучить формулы, ну и, разумеется, уметь хорошо проводить арифметические действия.

Поделиться или сохранить к себе:
Технарь знаток