Как найти площадь поверхности сферы вписанной в цилиндр

Авто помощник

Видео:ЕГЭ. Задача 8. Шар вписан в цилиндрСкачать

ЕГЭ. Задача 8. Шар вписан в цилиндр

Касательная прямая к сфере. Касательная плоскость к сфере

Определение 1. Прямую называют касательной к сфере (прямой, касающейся сферы), если эта прямая имеет со сферой единственную общую точку. Общую точку касательной прямой и сферы называют точкой касания (рис. 1).

Как найти площадь поверхности сферы вписанной в цилиндр

Как найти площадь поверхности сферы вписанной в цилиндр

Как найти площадь поверхности сферы вписанной в цилиндр

Прямая касается сферы тогда и только тогда, когда эта прямая проходит через точку касания и перпендикулярна радиусу сферы, проведенному в точку касания.

Множество всех прямых, касающихся сферы в некоторой точке, образуют касательную плоскость к сфере в этой точке (рис.2).

Как найти площадь поверхности сферы вписанной в цилиндр

Как найти площадь поверхности сферы вписанной в цилиндр

Как найти площадь поверхности сферы вписанной в цилиндр

Плоскость касается сферы тогда и только тогда, когда плоскость и сфера имеют общую точку, причем только одну.

Плоскость касается сферы тогда и только тогда, когда плоскость и сфера имеют общую точку, причем плоскость перпендикулярна радиусу сферы, проведенному в эту точку.

Общую точку сферы и ее касательной плоскости называют точкой касания .

Видео:Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шараСкачать

Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шара

Сфера, вписанная в цилиндр

Определение 2. Сферой, вписанной в цилиндр, называют такую сферу, которая касается плоскостей обоих оснований цилиндра, а каждая образующая цилиндра является касательной к сфере (рис. 3).

Как найти площадь поверхности сферы вписанной в цилиндр

Как найти площадь поверхности сферы вписанной в цилиндр

Определение 3. Если сфера вписана в цилиндр, то цилиндр называют описанным около сферы .

Из рисунка 3 видно, что справедливы следующие два утверждения.

Утверждение 1. Около любой сферы можно описать цилиндр.

Утверждение 2. В цилиндр можно вписать сферу тогда и только тогда, когда высота цилиндра равна диаметру его основания.

Замечание. В том случае, когда в цилиндр можно вписать сферу, радиус вписанной сферы равняется радиусу основания цилиндра.

Видео:Шар вписан в цилиндр. Площадь поверхности шара равна 78. Найдите площадь полной поверхности цилиндраСкачать

Шар вписан в цилиндр. Площадь поверхности шара равна 78. Найдите площадь полной поверхности цилиндра

Отношение объемов шара и цилиндра, описанного около сферы, ограничивающей этот шар

Задача. Найти отношение объемов шара и цилиндра, описанного около сферы, ограничивающей этот шар.

Видео:11 класс, 15 урок, Площадь поверхности цилиндраСкачать

11 класс, 15 урок, Площадь поверхности цилиндра

Площадь поверхности шара вписанного в цилиндр

Видео:Шар вписан в цилиндр 5 задание проф. ЕГЭ по математикеСкачать

Шар вписан в цилиндр 5 задание проф. ЕГЭ по математике

Найти площадь поверхности:

Как найти площадь поверхности сферы вписанной в цилиндр

Площадь поверхности шара формула:
Sш = 4 π R 2 , где R – радиус шара, π – число пи

Читайте также: Главный тормозной цилиндр для субару легаси

Площадь поверхности цилиндра формула:
Sц = 2 π R 2 + 2 π R . 2 R = 6 π R 2 , где R – радиус цилиндра, π – число пи

Видео:Сфера и шар. Сечение сферы. Вписанная и описанная сфераСкачать

Сфера и шар. Сечение сферы. Вписанная и описанная сфера

Сфера, вписанная в цилиндр

Определение 2. Сферой, вписанной в цилиндр, называют такую сферу, которая касается плоскостей обоих оснований цилиндра , а каждая образующая цилиндра является касательной к сфере (рис. 3).

Как найти площадь поверхности сферы вписанной в цилиндр

Как найти площадь поверхности сферы вписанной в цилиндр

Определение 3. Если сфера вписана в цилиндр, то цилиндр называют описанным около сферы .

Из рисунка 3 видно, что справедливы следующие два утверждения.

Утверждение 1. Около любой сферы можно описать цилиндр.

Утверждение 2. В цилиндр можно вписать сферу тогда и только тогда, когда высота цилиндра равна диаметру его основания .

Замечание. В том случае, когда в цилиндр можно вписать сферу, радиус вписанной сферы равняется радиусу основания цилиндра.

Видео:60. Площадь поверхности цилиндраСкачать

60. Площадь поверхности цилиндра

Площадь боковой поверхности цилиндра через радиус основания и высоту

Как найти площадь поверхности сферы вписанной в цилиндр

Формула для нахождения боковой поверхности цилиндра через высоту и радиус основания:

, где π — число Пи (3,14159…), r — радиус основания цилиндра, h — высота цилиндра.

Видео:ЕГЭ по математике. Базовый уровень. Задание 13. Около шара описан цилиндр. Площадь поверхностиСкачать

ЕГЭ по математике. Базовый уровень. Задание 13. Около шара описан цилиндр. Площадь поверхности

Через диаметр

Как известно, диаметр шара равен двум его радиусам: d = 2R. Следовательно, рассчитать площадь фигуры поверхности можно, используя такой вид формулы:

S = 4 π (d/2) 2

Видео:11 класс. Геометрия. Сфера и шар. Объем шара и площадь поверхности. 05.05.2020.Скачать

11 класс. Геометрия. Сфера и шар. Объем шара и площадь поверхности. 05.05.2020.

Основные утверждения

  • Поверхность шара в четыре раза больше площади его большого круга.
  • Поверхность шарового сегмента равна площади круга, имеющего радиусом отрезок, проведённый от вершины сегмента к окружности, служащей ему основанием.
  • Цилиндр, описанный вокруг шара, имеет объём, равный трём вторым объёма шара, и площадь поверхности, равную трём вторым площади поверхности шара.

Видео:#140. Задание 8: шарСкачать

#140. Задание 8: шар

Вместе с этой задачей также решают:

Найдите объём многогранника, вершинами которого являются вершины $A,B, C,B_1$ прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$, у которого $AB = 6, AD = 6$ и $AA_1 = 8$.

Найдите объём многогранника, вершинами которого являются вершины $A,B,C_1,B_1$ прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$, у которого $AB = 3 , AD = 5$ и $AA_1 = 4$.

В сосуд, имеющий форму правильной треугольной призмы, налили 1800 см 3 воды и полностью погрузили в неё деталь. При этом уровень жидкости поднялся с отметки 24 см до отметки 26 см.

Объём правильной четырёхугольной пирамиды SABCD равен 16. Точка E – середина ребра SB. Найдите объём пирамиды EABC.

Видео:Задача на шар. Найти площадь поверхности - bezbotvyСкачать

Задача на шар. Найти площадь поверхности - bezbotvy

Площадь полной поверхности цилиндра через радиус основания и высоту

Как найти площадь поверхности сферы вписанной в цилиндр

Формула для нахождения полной поверхности цилиндра через высоту и радиус основания:

, где π — число Пи (3,14159…), r — радиус основания цилиндра, h — высота цилиндра.

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Отношение объемов шара и цилиндра, описанного около сферы, ограничивающей этот шар

Задача. Найти отношение объемов шара и цилиндра, описанного около сферы, ограничивающей этот шар.

Читайте также: Определите объем камеры сгорания рабочий объем цилиндра полный объем цилиндра

Решение. Если R – радиус шара, то объем шара вычисляется по формуле

У описанного около сферы цилиндра радиус основания равен R , а высота равна 2R . Поэтому объем цилиндра равен

Видео:Площадь сферыСкачать

Площадь сферы

Касательная прямая к сфере. Касательная плоскость к сфере

Определение 1. Прямую называют касательной к сфере (прямой, касающейся сферы), если эта прямая имеет со сферой единственную общую точку. Общую точку касательной прямой и сферы называют точкой касания (рис. 1).

Как найти площадь поверхности сферы вписанной в цилиндр

Как найти площадь поверхности сферы вписанной в цилиндр

Как найти площадь поверхности сферы вписанной в цилиндр

Прямая касается сферы тогда и только тогда, когда эта прямая проходит через точку касания и перпендикулярна радиусу сферы , проведенному в точку касания.

Множество всех прямых, касающихся сферы в некоторой точке, образуют касательную плоскость к сфере в этой точке (рис.2).

Как найти площадь поверхности сферы вписанной в цилиндр

Как найти площадь поверхности сферы вписанной в цилиндр

Как найти площадь поверхности сферы вписанной в цилиндр

Плоскость касается сферы тогда и только тогда, когда плоскость и сфера имеют общую точку, причем только одну.

Плоскость касается сферы тогда и только тогда, когда плоскость и сфера имеют общую точку, причем плоскость перпендикулярна радиусу сферы , проведенному в эту точку.

Общую точку сферы и ее касательной плоскости называют точкой касания .

Видео:Стереометрия, номер 46.1Скачать

Стереометрия, номер 46.1

Решение

Из рисунка, указанного в условии, видно, что, с одной стороны, диаметр шара является диаметром окружности основания цилиндра, а с другой стороны, является высотой цилиндра. Пусть радиус шара равен R , тогда его диаметр равен 2 R , значит, высота цилиндра H равна 2 R . Находим площадь полной поверхности цилиндра: S полн. пов. цил. = 2 S осн. цил. + S бок. пов. цил. = 2pi R^2 + 2pi RH.

2pi R^2 + 2pi RH = 2pi R^2 + 2pi Rcdot 2R = 6pi R^2. По условию 24 = 6pi R^2. Отсюда pi R^2 = 4. Так как S пов. шара = 4pi R^2, то искомая площадь равна 4cdot 4 = 16.

Видео:ЕГЭ 2022 математика задача 4 вариант 2Скачать

ЕГЭ 2022 математика задача 4 вариант 2

Примеры задач

Задание 1
Вычислите площадь поверхности шара, если его радиус составляет 7 см.

Решение:
Воспользуемся первой формулой (через радиус):
S = 4 ⋅ 3,14 ⋅ (7 см) 2 = 615,44 см 2 .

Задание 2
Площадь поверхности шара равна 200,96 см 2 . Найдите его диаметр.

Как найти площадь поверхности сферы вписанной в цилиндр

Решение:
Выведем величину диаметра из соответствующей формулы расчета площади:

Видео:Как запомнить площадь поверхности цилиндра #математикапрофиль #геометрияегэСкачать

Как запомнить площадь поверхности цилиндра #математикапрофиль #геометрияегэ

Вписанный в шар цилиндр

Как найти площадь поверхности сферы вписанной в цилиндр

Рассмотрим комбинацию тел: шар и вписанный в шар цилиндр.

Цилиндр вписан в шар, если окружности его оснований лежат на поверхности шара. В этом случае говорят также, что шар описан вокруг цилиндра. Центр шара лежит на середине оси цилиндра.

Как найти площадь поверхности сферы вписанной в цилиндр

Как и при решении задач на шар, вписанный в цилиндр , чаще всего рассматривают сечение комбинации тел плоскостью, проходящей через ось цилиндра. Это сечение представляет собой вписанный в окружность прямоугольник, стороны которого равны высоте конуса и диаметру его основания. Центр окружности лежит на пересечении диагоналей прямоугольника.

Читайте также: Давление в цилиндрах луаз

Рассмотрим пример такого осевого сечения. Здесь точка O — центр описанного около цилиндра шара, BD — диаметр шара, OD=R — радиус шара, AB=H — образующая и высота цилиндра, AD — диаметр цилиндра, FD=r — радиус цилиндра.

Как найти площадь поверхности сферы вписанной в цилиндр

(как вписанный и центральный углы, опирающиеся на одну дугу AD).

Треугольник AOD — равнобедренный (AO=OD=R), в нем OF=H/2 — высота, медиана и биссектриса.

Треугольник OFD — прямоугольный. По теореме Пифагора получаем соотношение, связывающее радиус шара с радиусом и высотой вписанного в шар цилиндра:

Как найти площадь поверхности сферы вписанной в цилиндр

Как найти площадь поверхности сферы вписанной в цилиндр

Это же соотношение можно получить из прямоугольного треугольника ABD: по теореме Пифагора

Видео:11 класс, 25 урок, Сфера, вписанная в цилиндрическую поверхностьСкачать

11 класс, 25 урок, Сфера, вписанная в цилиндрическую поверхность

Нахождение площади поверхности вписанного в цилиндр шара

В данной публикации мы разберем варианты того, как можно вписать шар в цилиндр, а также, как исходя из этого определить его радиус (диаметр) и посчитать площадь поверхности.

Видео:11 класс, 23 урок, Площадь сферыСкачать

11 класс, 23 урок, Площадь сферы

Формула расчета площади шара

Для начала давайте вспомним общую формулу, по которой рассчитывается площадь поверхности шара:

S = 4 π R 2
или S = 4 π (d/2) 2 , где d = 2R.

Видео:#131. Задание 8: комбинация телСкачать

#131. Задание 8: комбинация тел

Способы вписать шар в цилиндр

Теперь давайте разберемся, каким образом можно вписать шар в цилиндр. В данном случае возможно несколько вариантов:

1. Шар касается оснований и боковой поверхности цилиндра

Как найти площадь поверхности сферы вписанной в цилиндр

  • радиус (диаметр) цилиндра является, в том числе, и радиусом (диаметром) шара;
  • высота цилиндра – это диаметр шара.

2. Шар касается только оснований цилиндра

Как найти площадь поверхности сферы вписанной в цилиндр

Радиус шара равен половине высоты цилиндра, а диаметр – полной высоте.

3. Шар касается только боковой поверхности цилиндра

Как найти площадь поверхности сферы вписанной в цилиндр

Радиус (диаметр) цилиндра – это и есть радиус (диаметр) шара.

Примечание: Выяснив радиус или диаметр шара далее остается только воспользоваться формулой для расчета площади его поверхности.

Примеры задач

Задание 1
Шар вписан в цилиндр радиусом 15 см таким образом, что соприкасается и с основанием, и с боковой поверхностью последнего. Найдите площадь поверхности шара.

Решение:
Исходя из условий задачи, мы имеем дело с первым из трех описанных вариантов выше. А это значит, что радиус шара, также, равняется 15 см. Следовательно, площадь составляет:
S = 4 ⋅ 3,14 ⋅ (15 см) 2 = 2826 см 2 .

Задание 2
Площадь поверхности шара равняется 1519,76 см 2 , и он вписан в цилиндр таким образом, что касается его оснований. Найдите высоту цилиндра.

Как найти площадь поверхности сферы вписанной в цилиндр

Решение:
Для начала найдем радиус шара, которые равен:

Высота цилиндра равна двум радиусам шара или его диаметру (2-ой вариант, рассмотренный в разделе выше):
h = 2R = 2 ⋅ 11 см = 22 см.

Поделиться или сохранить к себе:
Технарь знаток