Как найти площадь цилиндра вписанного в шестиугольную призму

Авто помощник

Видео:ЕГЭ 2022 математика задача 4 вариант 2Скачать

ЕГЭ 2022 математика задача 4 вариант 2

Цилиндры, вписанные в призмы. Свойства призмы, описанной около цилиндра

Как найти площадь цилиндра вписанного в шестиугольную призму

Как найти площадь цилиндра вписанного в шестиугольную призму

Определение 2. Если цилиндр вписан в призму, то призму называют описанной около цилиндра.

Прежде, чем перейти к вопросу о том, в какую же призму можно вписать цилиндр, докажем следующее свойство призм.

Утверждение 1. Если в основания призмы можно вписать окружности, то отрезок, соединяющий центры вписанных окружностей, будет параллелелен и равен боковому ребру призмы.

Как найти площадь цилиндра вписанного в шестиугольную призму

Как найти площадь цилиндра вписанного в шестиугольную призму

Рассуждая аналогичным образом, заключаем, что точка O’ равноудалена от всех прямых, на которых лежат ребра верхнего основания A’1A’2, A’2A’3, . , An – 1An , а поскольку O’ лежит в плоскости верхнего основания, то точка O’ является центром вписанной в многоугольник A’1A’2 . A’n окружности.

В силу того, что прямые OO’ и A1A’1 параллельны по построению, а прямые OA1 и O’A’ параллельны как линии пересечения двух параллельных плоскостей третьей плоскостью, замечаем, что четырехугольник OO’A1A’1 является параллелограммом, откуда вытекает равенство: OO’ = A1A’1 .

Теорема. В призму можно вписать цилиндр тогда и только тогда, когда выполнены следующие два условия:

  1. Призма является прямой призмой;
  2. В основания призмы можно вписать окружности.

Доказательство. Докажем сначала, что если в n – угольную призму вписан цилиндр, то оба условия теоремы выполнены.

Действительно, выполнение условия 2 следует непосредственно из определения цилиндра, вписанного в призму. Докажем, что выполняется и условие 1, т.е. докажем, что описанная около цилиндра призма является прямой призмой.

С этой целью рассмотрим ось цилиндра OO’ , соединяющую центры окружностей, вписанных в нижнее и верхнее основания призмы (рис. 3).

Как найти площадь цилиндра вписанного в шестиугольную призму

Как найти площадь цилиндра вписанного в шестиугольную призму

Согласно утверждению 1 отрезок OO’ параллелен боковым ребрам призмы. Поскольку ось цилиндра OO’ перпендикулярна к плоскостям его оснований, то и боковые ребра призмы также перпендикулярны к плоскостям оснований, то есть призма является прямой призмой.

Таким образом, мы доказали, что, если призма описана около цилиндра, то оба условия теоремы выполнены.

Теперь рассмотрим прямую n – угольную призму высоты h, в основания которой можно вписать окружности, и докажем, что в такую призму можно вписать цилиндр.

Обозначим буквой O центр окружности радиуса r, вписанной в нижнее основание призмы, а символом O’ обозначим центр окружности, вписанной в верхнее основание призмы (рис. 4).

Как найти площадь цилиндра вписанного в шестиугольную призму

Как найти площадь цилиндра вписанного в шестиугольную призму

Поскольку многоугольники, лежащие в основаниях призмы равны, то и радиусы вписанных в них окружностей будут равны. Согласно утверждению 1 отрезок OO’ параллелен и равен боковому ребру призмы. Так как рассматриваемая призма прямая, то ее боковые ребра перпендикулярны плоскости основания и равны высоте призмы h. Значит, и отрезок OO’ перпендикулярен плоскости основания призмы и равен h.

Цилиндр с осью OO’ , радиусом r и высотой h и будет вписан в исходную призму.

Доказательство теоремы завершено.

Следствие 1 . Высота призмы, описанной около цилиндра, равна высоте цилиндра.

Следствие 2. В любую прямую треугольную призму можно вписать цилиндр.

Справедливость этого утверждения вытекает из того факта, что в любой треугольник можно вписать окружность.

Следствие 3. В любую правильную n – угольную призму можно вписать цилиндр.

Для доказательства этого следствия достаточно заметить, правильная призма является прямой призмой. Основаниями правильной призмы являются правильные многоугольники, а в любой правильный n – угольник можно вписать окружность.

Видео:11 класс, 15 урок, Площадь поверхности цилиндраСкачать

11 класс, 15 урок, Площадь поверхности цилиндра

Отношение объемов цилиндра и описанной около него правильной n — угольной призмы

Задача. Найти отношение объемов цилиндра и описанной около него правильной n — угольной призмы.

Решение. Поскольку и объем цилиндра, и объем призмы объем призмы вычисляются по формуле

а высота цилиндра равна высоте описанной около него призмы, то для объемов цилиндра и описанной около него правильной n — угольной призмы справедливо равенство

Следствие 4. Отношение объема цилиндра к объему описанной около него правильной треугольной призмы правильной треугольной призмы равно

Следствие 5. Отношение объема цилиндра к объему описанной около него правильной четырехугольной призмы правильной четырехугольной призмы равно

Следствие 6. Отношение объема цилиндра к объему описанной около него правильной шестиугольной призмы равно

Видео:Призма и цилиндр. Практическая часть. 11 класс.Скачать

Призма и цилиндр. Практическая часть. 11 класс.

Как найти площадь цилиндра вписанного в шестиугольную призму

Говорят, что цилиндр вписан в призму (или призма описана около цилиндра), если основания цилиндра вписаны в соответствующие основания призмы (рис. 1). Очевидно, что их высоты совпадут (рис. 2).

Как найти площадь цилиндра вписанного в шестиугольную призму

Как найти площадь цилиндра вписанного в шестиугольную призму

Рис. 1. Цилиндр, вписанный в призму

Рис. 2. Цилиндр, вписанный в призму

Читайте также: Замки cisa под цилиндр

Нужно, чтобы в основание призмы можно было вписать окружность. Что для треугольной и правильной призмы верно всегда (рис. 3, 4).

Как найти площадь цилиндра вписанного в шестиугольную призму

Как найти площадь цилиндра вписанного в шестиугольную призму

Рис. 3. Цилиндр, вписанный в треугольную призму

Рис. 4. Цилиндр, вписанный в правильную шестиугольную призму

Вывод: цилиндр можно вписать в призму, если призма прямая, а в ее основание можно вписать окружность.

Для четырехугольный призмы необходимо чтобы призма была также прямой, а четырехугольник в основании был описанным. Т. е. суммы противоположных сторон были равны (рис. 5).

Как найти площадь цилиндра вписанного в шестиугольную призму

Рис. 5. Цилиндр, вписанный в четырехугольную призму

Условие: в правильную треугольную призму, все ребра которой равны 6, вписан цилиндр. Найти его радиус и высоту (рис. 6).

Как найти площадь цилиндра вписанного в шестиугольную призму

Рис. 6. Иллюстрация к задаче 1

Заметим, что высота цилиндра равна высоте призмы, а значит, равна 6.

Радиус основания цилиндра равен радиусу окружности, вписанной в правильный треугольник со стороной 6. Радиус этой окружности находим по формуле Как найти площадь цилиндра вписанного в шестиугольную призму, то есть он равен Как найти площадь цилиндра вписанного в шестиугольную призму.

Как найти площадь цилиндра вписанного в шестиугольную призму

Ответ: .

Говорят, что цилиндр можно описать около призмы (или призму вписать в цилиндр), если основания призмы вписаны в основания цилиндра. В данном случае, очевидно, снова будут равны высоты (боковые стороны призмы и образующие цилиндра) (рис. 7).

Как найти площадь цилиндра вписанного в шестиугольную призму

Рис. 7. Цилиндр, описанный около призмы

Цилиндр можно описать около призмы, когда основание призмы можно вписать в окружность. Для треугольной -угольной правильной призмы – всегда, для четырехугольной – когда сумма противоположных углов в основании дает 180 градусов (рис. 8).

Как найти площадь цилиндра вписанного в шестиугольную призму

Рис. 8. Цилиндр, описанный около четырехугольной призмы

Как найти площадь цилиндра вписанного в шестиугольную призму

Условие: дана правильная шестиугольная призма, вписанная в цилиндр. Радиус основания цилиндра равен 7, а площадь боковой поверхности цилиндра равна 28. Найти площадь боковой поверхности призмы (рис. 9).

Как найти площадь цилиндра вписанного в шестиугольную призму

Рис. 9. Иллюстрация к задаче 2

Сперва найдем высоту цилиндра. Так как Как найти площадь цилиндра вписанного в шестиугольную призму, то Как найти площадь цилиндра вписанного в шестиугольную призму.

Значит, и боковое ребро призмы также равно 2.

Далее, в основании призмы лежит правильный шестиугольник, вписанный в окружность. Как известно, сторона правильного шестиугольника равна радиусу описанной окружности, то есть 7.

Как найти площадь цилиндра вписанного в шестиугольную призму

Тогда площадь боковой поверхности призмы равна .

Условие. Дана четырехугольная прямая призма, все ребра которой равны 1. Известно, что около этой призмы можно описать цилиндр. Найдите объем призмы и площадь полной поверхности данного цилиндра (рис. 10).

Как найти площадь цилиндра вписанного в шестиугольную призму

Рис. 10. Иллюстрация к задаче 3

Так как все ребра равны, то в основании призмы лежит ромб. Раз можно описать цилиндр около призмы, то ромб можно вписать в окружность, а значит, этот ромб – квадрат. Следовательно, призма – это куб со стороной 1, его объем также равен 1.

Высота цилиндра – 1, а радиус окружности равен половине диагонали квадрата, то есть Как найти площадь цилиндра вписанного в шестиугольную призму. Тогда Как найти площадь цилиндра вписанного в шестиугольную призму.

Как найти площадь цилиндра вписанного в шестиугольную призму

Ответ: .

На уроке мы разобрали комбинации призмы и цилиндра, а также решили задачи по темам: цилиндр, описанный вокруг призмы и цилиндр, вписанный в призму.

Список литературы

  1. Атанасян Л.С. и др. Геометрия. Учебник для 10-11 классов.
  2. Погорелов А.В. Геометрия. Учебник для 10-11 классов.
  3. Бевз В.Г., Владимирова Н.Г. Геометрия 11 класс.

Домашнее задание

Как найти площадь цилиндра вписанного в шестиугольную призму

  1. В правильную треугольную призму, все ребра которой равны 12, вписан цилиндр. Найти его радиус и высоту.
  2. Дана правильная шестиугольная призма, вписанная в цилиндр. Радиус основания цилиндра равен 10, а площадь боковой поверхности цилиндра равна 100. Найти площадь боковой поверхности призмы.
  3. Дана четырехугольная прямая призма, все ребра которой равны 2. Известно, что около этой призмы можно описать цилиндр. Найдите объем призмы и площадь полной поверхности данного цилиндра.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Видео:ЕГЭ СТЕРЕОМЕТРИЯ ЦИЛИНДР ВПИСАН В ПРИЗМУ| НЕОБЫЧНОЕ ЯВЛЕНИЕ ДЛЯ СЕГОДНЯШНЕГО ВРЕМЕНИ| ГЛОБАЛКА ЕГЭСкачать

ЕГЭ СТЕРЕОМЕТРИЯ ЦИЛИНДР ВПИСАН В ПРИЗМУ| НЕОБЫЧНОЕ ЯВЛЕНИЕ ДЛЯ СЕГОДНЯШНЕГО ВРЕМЕНИ| ГЛОБАЛКА ЕГЭ

Как найти площадь цилиндра вписанного в шестиугольную призму

Как найти площадь цилиндра вписанного в шестиугольную призму

Проверяемые элементы содержания и виды деятельности: владение понятиями о стереометрических фигурах; знание их свойств; знание формул для вычисления площадей поверхностей и объемов тел; умение применять эти знания при решении задач.

Ориентировочное время выполнения учащимися: 10—15 минут.

• Элементы, площадь поверхности, объем стереометрических фигур.

Особенности экзаменационных заданий по стереометрии

Задания этого вида представляют собой стереометрические задания на установление взаимосвязи между основными элементами многогранников и круглых тел, а также на использование формул для вычисления их площадей поверхностей и объемов. Вычислительной трудности задания не представляют; решение, как правило, сводится к использованию одной-двух формул. Соответствующие формулы нужно знать наизусть.

Куб — правильный многогранник, каждая грань которого представляет собой квадрат. Куб является частный случаем параллелепипеда и призмы, поэтому для него выполнены все их свойства. Кроме того, если а — длина ребра куба, — диагональ основания, — диагональ куба, — площадь полной поверхности, а V — объем куба, то справедливы формулы:

Читайте также: Рабочий цилиндр сцепления ваз 2105 артикул

Видео:Сфера и шар. Сечение сферы. Вписанная и описанная сфераСкачать

Сфера и шар. Сечение сферы. Вписанная и описанная сфера

Призма. Прямоугольный параллелепипед

Призмой (n-угольной призмой) называется многогранник, две грани которого — равные n-угольники, лежащие в параллельных плоскостях, а остальные n граней — параллелограммы.

Правильной призмой называется прямая призма, основание которой — правильный многоугольник.

Прямой призмой называется призма, боковое ребро которой перпендикулярно плоскости основания. Высота прямой призмы равна ее боковому ребру, а все боковые грани прямой призмы — прямоугольники.

Соотношения для прямой призмы

Пусть H — высота прямой призмы, AA1 — боковое ребро, — периметр основания, — площадь основания, — площадь боковой поверхности, — площадь полной поверхности, V — объем прямой призмы. Тогда имеют место следующие соотношения:

Особенности правильной шестиугольной призмы

В основании правильной шестиугольной призмы лежит правильный шестиугольник. Напомним его свойства.

— Сторона правильного шестиугольника равна радиусу описанной вокруг него окружности.

— Большая диагональ правильного шестиугольника является диаметром описанной вокруг него окружности и равна двум его сторонам.

— Меньшая диагональ правильного шестиугольника в раз больше его стороны.

— Угол между сторонами правильного шестиугольника равен 120°.

— Меньшая диагональ правильного шестиугольника перпендикулярна его стороне.

— Треугольник, образованный стороной шестиугольника, его большей и меньшей диагоналями, прямоугольный, а его острые углы равны 30° и 60°.

Пусть вне плоскости многоугольника задана точка P. Тогда фигура, образованная треугольниками , и многоугольником вместе с их внутренними областями называется пирамидой (n-угольной пирамидой).

Пирамида называется правильной, если ее основание — правильный многоугольник, а основание ее высоты — центр этого многоугольника.

Соотношения для правильной пирамиды

Пусть H — высота правильной пирамиды, h — ее апофема, — периметр основания пирамиды, — площадь основания, — площадь боковой поверхности, — площадь полной поверхности, V — объем правильной пирамиды. Тогда имеют место следующие соотношения:

Секущей плоскостью многогранника называется любая плоскость, по обе стороны от которой имеются точки данного многогранника. Секущая плоскость пересекает грани многогранника по отрезкам. Многоугольник, сторонами которого являются эти отрезки, называется сечением многогранника.

Тетраэдр имеет четыре грани, поэтому его сечениями могут быть только треугольники и четырехугольники (рис. 1). Параллелепипед имеет шесть граней. Его сечениями могут быть треугольники, четырехугольники, пятиугольники и шестиугольники (рис. 2).

Теоремы, используемые при построении сечений

Теорема 1. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. Поэтому секущая плоскость пересекает плоскости параллельных граней по параллельным прямым.

Теорема 2. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.

Теорема 3. Если прямая l параллельна какой либо прямой m, проведённой в плоскости то она параллельна и самой плоскости

Теорема 4. Если прямая, лежащая в плоскости сечения, не параллельна плоскости некоторой грани, то она пересекается со своей проекцией на эту грань.

Алгоритм построения сечений

Для построения сечений рекомендуем пользоваться следующим алгоритмом.

1. Если две точки секущей плоскости лежат в плоскости одной грани, то проводим через них прямую. Часть прямой, лежащая в плоскости грани — сторона сечения.

2. Если прямая a является общей прямой секущей плоскости и плоскости какой-либо грани, то находим точки пересечения прямой a с прямыми, содержащими ребра этой грани. Полученные точки — новые точки секущей плоскости, лежащие в плоскостях граней.

3. Если никакие две из данных точек не лежат в плоскости одной грани, то строим вспомогательное сечение, содержащее любые две данные точки, а затем выполняем шаги 1, 2.

Для контроля правильности построенного сечения, проверяйте, что:

— все вершины сечения лежат на рёбрах многогранника;

— все стороны сечения лежат в гранях многогранника;

— в каждой грани многогранника лежит не более одной стороны сечения.

Цилиндром называется фигура, полученная при вращении прямоугольника вокруг оси, содержащей его сторону.

Пусть h — высота цилиндра, r — радиус основания, Sбок — площадь боковой поверхности, Sполн — площадь полной поверхности, V — объем цилиндра. Тогда имеют место следующие соотношения:

Конусом называется фигура, полученная при вращении прямоугольного треугольника вокруг оси, содержащей его катет.

Пусть h — высота конуса, r — радиус основания, l — образующая, Sбок — площадь боковой поверхности, Sполн — площадь полной поверхности, V — объем конуса. Тогда имеют место следующие соотношения:

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Сфера и шар

Шаром называется фигура, полученная при вращении полукруга вокруг оси, содержащей его диаметр. Сферой называется поверхность шара. Пусть R — радиус шара, S — площадь сферы, V — объем шара. Тогда имеют место следующие соотношения:

Комбинации круглых тел. Вписанные сферы

Сфера называется вписанной в цилиндр, если она касается обоих оснований цилиндра и каждой его образующей.

Сфера называется вписанной в конус, если она касается основания конуса и каждой его образующей.

Читайте также: Обедненная смесь в одном цилиндре

Сфера называется вписанной в усечённый конус, если она касается обоих оснований конуса и всех его образующих.

Теорема 1: В прямой круговой цилиндр можно вписать сферу тогда и только тогда, когда его высота равна диаметру основания. Причём центр сферы есть середина оси цилиндра.

Теорема 2: В любой прямой круговой конус можно вписать сферу. Причём центр сферы есть точка пересечения оси конуса с биссектрисой угла наклона образующей конуса к плоскости его основания.

Теорема 3. В усечённый конус можно вписать сферу тогда и только тогда, когда он прямой круговой, и длина его образующей равна сумме длин радиусов оснований. Причём центр сферы есть середина оси усечённого конуса.

Комбинации круглых тел. Описанные сферы

Сфера называется описанной около цилиндра, если окружности его оснований лежат на сфере.

Сфера называется описанной около конуса, если вершина конуса и его основание лежат на сфере.

Теорема 1: около цилиндра можно описать сферу тогда и только тогда, когда он прямой круговой. Причём центр сферы есть середина оси цилиндра.

Теорема 2: около конуса можно описать сферу тогда и только тогда, когда он круговой. Причём центр сферы есть точка пересечения прямой, перпендикулярной к плоскости основания и проходящей через центр его, и плоскости, перпендикулярной какой-либо его образующей конуса и проходящей середину этой образующей.

Следствие: сферу можно описать около любого прямого кругового конуса. В этом случае, центр сферы — точка пересечения прямой, содержащей высоту конуса с плоскостью, перпендикулярной какой-либо из его образующих и проходящей через ее середину.

Комбинации конуса и цилиндра

Цилиндр называется вписанным в конус, если одно его основание лежит на основании конуса, а второе совпадает с сечением конуса плоскостью, параллельной основанию. Конус в этом случае называется описанным вокруг цилиндра.

Цилиндр называется описанным вокруг конуса, если центр одного из оснований цилиндра является вершиной вершина конуса, а противоположное основание цилиндра совпадает с основанием конуса. Конус в этом случае называется вписанным в цилиндр.

Комбинации многогранников и круглых тел. Описанные сферы

Сфера называется описанной около многогранника, если все его вершины лежат на этой сфере. Многогранник называется в этом случае вписанным в сферу.

Возможность описать сферу около многогранника означает существование точки (центра сферы), равноудалённой ото всех вершин многогранника.

Теорема 1: если из центра описанной около многогранника сферы опустить перпендикуляр на какое-либо из его рёбер, то основание этого перпендикуляра разделит ребро на две равные части.

Теорема 2: если из центра описанной около многогранника сферы опустить перпендикуляр на какую-либо из его граней, то основание этого перпендикуляра попадёт в центр круга, описанного около соответствующей грани.

Теорема 3: если около многогранника описана сфера, то её центр лежит на пересечении перпендикуляров к каждой грани пирамиды, проведённых через центр окружности, описанной около соответствующей грани.

Теорема 4: если около многогранника описана сфера, то её центр является точкой пересечений всех плоскостей, проведённых через середины рёбер пирамиды перпендикулярно к этим рёбрам.

Комбинации многогранников и круглых тел. Вписанные сферы

Сфера называется вписанной в многогранник, если все его грани касаются этой сферы. Многогранник называется в этом случае описанным около сферы.

Теорема: если в многогранник с площадью поверхности S и объёмом V вписан шар радиуса r, то справедливо соотношение:

Комбинации конуса, цилиндра и многогранников

В условиях задач встречаются также следующие понятия, не входящие в школьные учебники, которые уточняются непосредственно в условиях задач. Приведем наиболее употребительные из них.

Цилиндр вписан в призму: основания цилиндра вписаны в основания призмы.

Цилиндр описан вокруг призмы: основания цилиндра описаны вокруг оснований призмы.

Цилиндр вписан в пирамиду: одно из основание цилиндра вписано в сечение пирамиды плоскостью, параллельной основанию, а другое основание цилиндра принадлежит основанию пирамиды.

Цилиндр описан вокруг пирамиды: вершина пирамиды принадлежит одному из оснований цилиндра, а другое его основание описано вокруг основания пирамиды.

Конус вписан в призму: основание конуса вписано в основание призмы, а вершина конуса принадлежит противоположному основанию призмы.

Конус описан вокруг призмы: одно из оснований призмы вписано в сечение пирамиды плоскостью, параллельной основанию, а другое основание призмы вписано в основание конуса.

Конус вписан в пирамиду: их вершины совпадают, а основание конуса вписано в основание пирамиды. Вписать конус в пирамиду можно только тогда, когда апофемы пирамиды равны между собой.

Конус описан вокруг пирамиды: их вершины совпадают, а основание конуса описано вокруг основания пирамиды.

🎦 Видео

11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Шестиугольная призма.Ортогональные и изометрическая проекции.Урок 17.(Часть2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)Скачать

Шестиугольная призма.Ортогональные и изометрическая проекции.Урок 17.(Часть2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)

Стереометрия. В правильную четырехугольную призму вписан круглый цилиндра. Найдите высоту цилиндраСкачать

Стереометрия. В правильную четырехугольную призму вписан круглый цилиндра. Найдите высоту цилиндра

11 класс. Геометрия. Объем цилиндраСкачать

11 класс. Геометрия. Объем цилиндра

Цилиндр - расчёт площади, объёма.Скачать

Цилиндр - расчёт площади, объёма.

#130. Задание 8: комбинация телСкачать

#130. Задание 8: комбинация тел

60. Площадь поверхности цилиндраСкачать

60. Площадь поверхности цилиндра

Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шараСкачать

Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шара

Куб и цилиндр. Практическая часть. 11 класс.Скачать

Куб и цилиндр. Практическая часть. 11 класс.

Геометрия - Построение шестиугольникаСкачать

Геометрия - Построение шестиугольника

Шар вписан в цилиндр. Площадь поверхности шара равна 78. Найдите площадь полной поверхности цилиндраСкачать

Шар вписан в цилиндр. Площадь поверхности шара равна 78. Найдите площадь полной поверхности цилиндра

Геометрия 11 класс (Урок№15 - Комбинации многогранников и круглых тел.)Скачать

Геометрия 11 класс (Урок№15 - Комбинации многогранников и круглых тел.)

Объем цилиндра. Практическая часть. 11 класс.Скачать

Объем цилиндра. Практическая часть. 11 класс.

11 класс, 32 урок, Объем цилиндраСкачать

11 класс, 32 урок, Объем цилиндра
Поделиться или сохранить к себе:
Технарь знаток