Зная диаметр и высоту цилиндра, можно узнать площадь, объем, диагональ цилиндра и остальные параметры. Площадь боковой поверхности цилиндра представляет собой площадь прямоугольника, сторонами которого являются периметр основания цилиндра и его высота. Чтобы затем найти площадь полной поверхности цилиндра через диаметр и высоту, нужно к площади боковой поверхности добавить площадь верхнего и нижнего оснований, каждое из которых равно произведению числа π на четверть квадрата диаметра. S_(б.п.)=hP=πDh S_(п.п.)=S_(б.п.)+2S_(осн.)=πDh+(πD^2)/2=πD/2(2h+D) P=πD
Объем цилиндра представляет собой площадь его основания, умноженную на высоту. Чтобы найти объем цилиндра через диаметр и высоту, нужно умножить квадрат диаметра на четверть числа π и на высоту. V=(πD^2 h)/4 P=πD
Диагональ цилиндра находится из прямоугольного треугольника, в котором она является гипотенузой, а катеты представлены высотой и диаметром цилиндра. По теореме Пифагора диагональ цилиндра через высоту и диаметр цилиндра равна квадратному корню из суммы их квадратов. (рис. 25.1) d=√(h^2+D^2 ) P=πD
Чтобы найти радиус сферы вписанной в цилиндр, если его диаметр равен высоте, нужно разделить диаметр цилиндра либо высоту на два, так как радиус вписанной сферы равен радиусу цилиндра. (рис.25.2) r_1=h/2=D/2 P=πD
Радиус сферы, описанной вокруг цилиндра, при соблюдении тех же условий (равенство диаметра цилиндра и его высоты) равен половине диагонали цилиндра.(рис.25.3) R=d/2=√(h^2+D^2 )/2
- Площадь цилиндра
- Полная площадь цилиндра через радиус
- Нахождение площади поверхности цилиндра: формула и задачи
- Формула вычисления площади цилиндра
- 1. Боковая поверхность
- 2. Основание
- 3. Полная площадь
- Примеры задач
- Онлайн калькулятор. Площадь цилиндра.
- Найти площадь поверхности цилиндра
- Ввод данных в калькулятор для вычисления площади цилиндра
- Дополнительные возможности калькулятора вычисления площади цилиндра
- Теория. Площадь поверхности цилиндра
- Площадь сечения цилиндра
- Как найти площадь поверхности цилиндра: боковую, основания, полную
- Площадь боковой поверхности цилиндра
- Круговой цилиндр
- Как рассчитать площадь боковой поверхности цилиндра с помощью калькулятора
- Примеры задач
- Осевое сечение прямого цилиндра
- Введите радиус основания и высоту цилиндра
- Площадь полной поверхности цилиндра
- Основные определения и свойства цилиндра
- Геометрическая фигура
- Осевое сечение наклонного цилиндра
- Примеры расчета площади поверхности цилиндра
- Площадь цилиндра формула через диаметр
- Площадь боковой поверхности цилиндра через радиус основания и высоту
- Заключение
Видео:Цилиндр - расчёт площади, объёма.Скачать
Площадь цилиндра
Вы будете перенаправлены на Автор24
На этой странице вы узнаете, как посчитать площадь цилиндра: приведены формулы для расчёта площади боковой поверхности цилиндра и для полной площади поверхности цилиндра.
Также на страницу добавлены онлайн-калькуляторы для быстрых расчётов.
В простейшем случае цилиндр — это геометрическое тело, полученное путём вращения прямоугольника по кругу вокруг какой-либо из его сторон. Основаниями такого цилиндра являются окружности.
Для того чтобы воспользоваться формулами для вычисления площади полной поверхности цилиндра, необходимо знать радиус или диаметр окружности, лежащей в основании.
Ниже приведены онлайн-калькуляторы для расчёта полной площади цилиндра или только его боковой поверхности.
Для их использования введите заданные величины в поля для ввода.
Видео:11 класс, 15 урок, Площадь поверхности цилиндраСкачать
Полная площадь цилиндра через радиус
Полную площадь цилиндра через радиус определяют через сумму площадей двух его оснований и боковой поверхности:
$S = 2 \cdot π \cdot R \cdot h + 2 \cdot π \cdot R^2 = 2 \cdot π \cdot R (h + R)$, где
$R$ — радиус основания цилиндра;
Рассчитайте объём цилиндра с радиусом основания, равным $5$ см и высотой, равной $7$ см.
Воспользуемся формулой для расчёта площади поверхности цилиндра через радиус:
$S = 2 \cdot 3,14 \cdot 5 \cdot (5 + 7) = 376,9$ кв. см.
Проверим ответ с помощью онлайн-калькулятора — он совпадает, значит, расчёты проведены верно.
Видео:ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРАСкачать
Нахождение площади поверхности цилиндра: формула и задачи
В данной публикации мы рассмотрим, как можно найти площадь поверхности цилиндра и разберем примеры решения задач для закрепления материала.
Читайте также: Ручная хонинговка блока цилиндров
Видео:Видеоурок по математике "Цилиндр"Скачать
Формула вычисления площади цилиндра
1. Боковая поверхность
Площадь (S) боковой поверхности цилиндра равна произведению длины окружности, являющейся основанием фигуры, на его высоту.
Длина окружности, в свою очередь, рассчитывается так: C = 2 π R. Следовательно, рассчитать площадь можно следующим образом:
Примечание: в вычислениях значение числа π округляется до 3,14.
2. Основание
В качестве оснований цилиндра (равны между собой), выступает круг, площадь которого равна:
Т.к. диаметр круга равен двум его радиусам (d = 2R), выражение можно преобразовать таким образом:
3. Полная площадь
Для нахождения данной величины необходимо просуммировать площади боковой поверхности и двух равных оснований цилиндра, т.е.:
S = 2 π R h + 2 π R 2 или S = 2 π R (h + R)
Видео:60. Площадь поверхности цилиндраСкачать
Примеры задач
Задание 1
Найдите площадь боковой поверхности цилиндра, если его радиус равен 11 см, а высота – 8 см.
Решение:
Воспользуемся первой формулой, подставив в нее данные по условиям задачи значения:
S = 2 ⋅ 3,14 ⋅ 11 см ⋅ 8 см = 552,64 см 2 .
Задание 2
Высота цилиндра равна 9 см, а его диаметр – 8 см. Найдите суммарную площадь поверхности фигуры.
Решение:
Если диаметр цилиндра равен 8 см, значит его радиус составляет 4 см (8 см / 2). Применив соответствующую формулу для нахождения площади получаем:
S = 2 ⋅ 3,14 ⋅ 4 см ⋅ (9 см + 4 см) = 326,56 см 2 .
Видео:Лучший способ найти площадь кругаСкачать
Онлайн калькулятор. Площадь цилиндра.
Используя этот онлайн калькулятор, вы сможете найти площадь боковой поверхности цилиндра, а также площадь полной поверхности цилиндра.
Воспользовавшись онлайн калькулятором для вычисления площади поверхности цилиндра, вы получите детальное пошаговое решение вашего примера, которое позволит понять алгоритм решения таких задач и закрепить пройденный материал.
Видео:КАК НАЙТИ ПЛОЩАДЬ КРУГА, ЕСЛИ ИЗВЕСТЕН ДИАМЕТР? Примеры | МАТЕМАТИКА 6 классСкачать
Найти площадь поверхности цилиндра
Введите значение радиуса цилиндра и его высоты
R = |
h = |
Ввод данных в калькулятор для вычисления площади цилиндра
В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
N.B. В онлайн калькуляте можно использовать величины в однаквых единицах измерения!
Если у вас возниели трудности с преобразованием едениц измерения воспользуйтесь конвертером единиц расстояния и длины и конвертером единиц площади.
Дополнительные возможности калькулятора вычисления площади цилиндра
Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать
Теория. Площадь поверхности цилиндра
— геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями (основаниями), пересекающими её.
Цилиндр называется круговым, если его основание – круг. Расстояние между основаниями – высота цилиндра.
Формулы для вычисления площади боковой поверхности цилиндра
Формулы для вычисления площади полной поверхности цилиндра
S = 2 π R h + 2 π R 2 = 2 π R ( R + h )
где S — площадь,
R — радиус цилиндра,
h — высота цилиндра,
π = 3.141592.
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Видео:Радиус и диаметрСкачать
Площадь сечения цилиндра
Цилиндр — это геометрическая фигура, ограниченная цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими её. Основными математическими характеристиками цилиндра являются диаметр основания и высота.
Сечение цилиндра — это изображение фигуры, образованной рассечением цилиндра плоскостью в поперечном или продольном направлении.
Формула для расчета площади основания цилиндра:
Формула для расчета площади осевого сечения цилиндра:
d — диаметр цилиндра;
h — высота цилиндра.
Формула для расчета площади параллельного оси сечения цилиндра (бокового сечения цилиндра):
a — хорда основания цилиндра;
h — высота цилиндра.
Смотрите также статью о всех геометрических фигурах (линейных 1D, плоских 2D и объемных 3D).
Быстро выполнить эту математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.
На этой странице представлен самый простой онлайн калькулятор расчета площади поперечного или продольного сечения цилиндра, если известны диаметр цилиндра, длина хорды и высота цилиндра. С помощью этого калькулятора вы в один клик сможете рассчитать площадь сечения цилиндра (площадь осевого сечения цилиндра, площадь параллельного сечения цилиндра, площадь бокового сечения цилиндра и площади основания цилиндра).
Видео:Длина окружности. Площадь круга - математика 6 классСкачать
Как найти площадь поверхности цилиндра: боковую, основания, полную
Видео:Объём цилиндраСкачать
Площадь боковой поверхности цилиндра
Формула площади боковой поверхности цилиндра представляет собой произведение длины основания на его высоту:
Читайте также: Расчет момента инерции полого цилиндра
Таким образом, используя формулы площади оснований и боковой поверхности фигуры, мы смогли найти полную площадь поверхности цилиндра.
Осевое сечение цилиндра представляет собой прямоугольник, в котором стороны равны высоте и диаметру цилиндра.
Формула площади осевого сечения цилиндра выводится из формулы расчета площади прямоугольника :
Видео:Длина окружности. Площадь круга. 6 класс.Скачать
Круговой цилиндр
где r – радиус основы, h – высота цилиндра, d – диаметр основы.
Видео:Длина окружности. Математика 6 класс.Скачать
Как рассчитать площадь боковой поверхности цилиндра с помощью калькулятора
Калькулятор позволяет определить площадь цилиндра по одному из 2 вариантов исходных данных:
- внешний радиус и высота;
- внешний диаметр и высота.
Выберите соответствующий шаг и введите исходные данные в соответствующие поля.
Также важно указать единицы измерения по условиям задачи.
Расчеты будут выполнены автоматически и конвертированы в основные метрические физические величины площади.
Видео:Площадь круга. Математика 6 класс.Скачать
Примеры задач
Задание 1
Найдите площадь боковой поверхности цилиндра, если его радиус равен 11 см, а высота – 8 см.
Решение:
Воспользуемся первой формулой, подставив в нее данные по условиям задачи значения:
S = 2 ⋅ 3,14 ⋅ 11 см ⋅ 8 см = 552,64 см 2 .
Задание 2
Высота цилиндра равна 9 см, а его диаметр – 8 см. Найдите суммарную площадь поверхности фигуры.
Решение:
Если диаметр цилиндра равен 8 см, значит его радиус составляет 4 см (8 см / 2). Применив соответствующую формулу для нахождения площади получаем:
S = 2 ⋅ 3,14 ⋅ 4 см ⋅ (9 см + 4 см) = 326,56 см 2 .
Видео:Геометрия Задача про монаха Найти диаметр цилиндраСкачать
Осевое сечение прямого цилиндра
Осевым называется любое сечение цилиндра, которое содержит его ось. Это определение означает, что осевое сечение будет всегда параллельно образующей линии.
В цилиндре прямом ось проходит через центр круга и перпендикулярна его плоскости. Это означает, что рассматриваемое сечение круг будет пересекать по его диаметру. На рисунке показана половинка цилиндра, которая получилась в результате пересечения фигуры плоскостью, проходящей через ось.
Не сложно понять, что осевое сечение прямого круглого цилиндра представляет собой прямоугольник. Его сторонами являются диаметр d основания и высота h фигуры.
Запишем формулы для площади осевого сечения цилиндра и длины hd его диагонали:
Прямоугольник имеет две диагонали, но обе они равны друг другу. Если известен радиус основания, то не сложно переписать эти формулы через него, учитывая, что он в два раза меньше диаметра.
Видео:11 класс. Геометрия. Объем цилиндраСкачать
Введите радиус основания и высоту цилиндра
Цилиндр – геометрическое тело, которое получается при вращении прямоугольника вокруг его стороны. Также, цилиндр представляет собой тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Эта поверхность образуется при движении прямой параллельно самой себе. При этом выделенная точка прямой перемещается вдоль определенной плоской кривой (направляющая). Данная прямая называется образующей цилиндрической поверхности.
Площадь полной поверхности цилиндра формула:
S = Sбок + 2 Sосн 2 , где Sбок – площадь боковой поверхности, Sосн – площадь основания
или
S = 2 π R h + 2 π R 2 , где R – радиус оснований, h – высота цилиндра, π – число пи
Видео:Задача на вычисление высоты цилиндраСкачать
Площадь полной поверхности цилиндра
Для нахождения полной площади цилиндра нужно к полученной Sбок добавить площади двух окружностей, верха и низа цилиндра, которые считаются по формуле Sо = 2π * r2.
Конечная формула выглядит следующим образом:
Sпол = 2π * r2 + 2π * r * h.
Видео:ПЛОЩАДЬ КРУГА. ЛАЙФХАК #math #логика #загадка #математика #геометрияСкачать
Основные определения и свойства цилиндра
Рассмотрим две паралллельные плоскости паралллельные плоскости α и β и произвольную окружность радиуса r с центром в точке O , лежащую в плоскости α (рис. 1).
Если из каждой точки окружности опустить перпендикуляр на плоскость β , то основания этих перпендикуляров образуют на плоскости β окружность радиуса r , центр O1 которой является основанием перпендикуляра, опущенного из точки O на плоскость β (рис.2).
Отрезок перпендикуляра , опущенного из любой точки окружности с центром O на плоскость β , который заключен между плоскостями α и β , называют образующей цилиндра .
Совокупность всех образующих цилиндра называют цилиндрической поверхностью .
Фигуру, ограниченную цилиндрической поверхностью и плоскостями α и β, называют цилиндром .
Отрезок OO1 называют осью цилиндра .
Радиус окружности Радиус окружности на плоскости α с центром в точке O называют радиусом цилиндра .
Расстояние между плоскостями Расстояние между плоскостями α и β , называют высотой цилиндра .
Читайте также: Рабочий тормозной цилиндр шкода фелиция
Круги с центрами O и O1 на плоскостях α и β , называют основаниями цилиндра .
Замечание 1. Цилиндрическую поверхность часто называют боковой поверхностью цилиндра . Боковая поверхность цилиндра и основания цилиндра вместе составляют полную поверхность цилиндра .
Замечание 2. Каждая образующая цилиндра параллельна оси цилиндра, а длина каждой образующей цилиндра равна высоте цилиндра.
Замечание 3. Прямая OO1 является осью симметрии цилиндра, а середина отрезка OO1 является центром симметрии цилиндра.
Видео:Как запомнить площадь поверхности цилиндра #математикапрофиль #геометрияегэСкачать
Геометрическая фигура
Сначала дадим определение фигуре, о которой пойдет речь в статье. Цилиндр представляет собой поверхность, образованную параллельным перемещением отрезка фиксированной длины вдоль некоторой кривой. Главным условием этого перемещения является то, что отрезок плоскости кривой принадлежать не должен.
На рисунке ниже показан цилиндр, кривая (направляющая) которого является эллипсом.
Здесь отрезок длиной h является его образующей и высотой.
Видно, что цилиндр состоит из двух одинаковых оснований (эллипсы в данном случае), которые лежат в параллельных плоскостях, и боковой поверхности. Последней принадлежат все точки образующих линий.
Видео:Нахождение площади боковой поверхности цилиндраСкачать
Осевое сечение наклонного цилиндра
Рисунок выше демонстрирует наклонный цилиндр, изготовленный из бумаги. Если выполнить его осевое сечение, то получится уже не прямоугольник, а параллелограмм. Его стороны – это известные величины. Одна из них, как и в случае сечения прямого цилиндра, равна диаметру d основания, другая же – длина образующего отрезка. Обозначим ее b.
Для однозначного определения параметров параллелограмма недостаточно знать его длины сторон. Необходим еще угол между ними. Предположим, что острый угол между направляющей и основанием равен α. Он же и будет углом между сторонами параллелограмма. Тогда формулу для площади осевого сечения наклонного цилиндра можно записать следующим образом:
Диагонали осевого сечения цилиндра наклонного рассчитать несколько сложнее. Параллелограмм имеет две диагонали разной длины. Приведем без вывода выражения, позволяющие рассчитывать диагонали параллелограмма по известным сторонам и острому углу между ними:
Здесь l1 и l2 – длины малой и большой диагоналей соответственно. Эти формулы можно получить самостоятельно, если рассмотреть каждую диагональ как вектор, введя прямоугольную систему координат на плоскости.
Примеры расчета площади поверхности цилиндра
Для понимания приведенных формул попробуем посчитать площадь поверхности цилиндра на примерах.
1. Радиус основания цилиндра равен 2, высота равна 3. Определите площадь боковой поверхности цилиндра.
Площадь боковой поверхности цилиндра равна 37,68.
2. Как найти площадь поверхности цилиндра, если высота равна 4, а радиус 6?
S = 2 * 3,14 * 6 2 + 2 * 3,14 * 6 * 4
S = 2 * 3,14 * 36 + 2 * 3,14 * 24
Площадь поверхности цилиндра равна 376,8.
3. Площадь боковой поверхности прямого кругового цилиндра равна 24π, а диаметр основания — 3. Найдите высоту цилиндра.
Из формулы расчета площади боковой поверхности цилиндра Sбок. = 2πrh следует, что высота равна:
Значение радиуса получаем из формулы: d = 2r
Площадь цилиндра формула через диаметр
Для облегчения расчетов иногда требуется произвести вычисления через диаметр. Например, имеется кусок полой трубы известного диаметра.
Не утруждая себя лишними расчетами, имеем готовую формулу. На помощь приходит алгебра за 5 класс.
Sпол = 2π * r2 + 2π * r * h = 2π * d2/4 + 2π * h * d/2 = π * d2/2 + π * d * h,
Вместо r в полную формулу нужно вставить значение r = d/2.
Площадь боковой поверхности цилиндра через радиус основания и высоту
Формула для нахождения боковой поверхности цилиндра через высоту и радиус основания:
, где π — число Пи (3,14159…), r — радиус основания цилиндра, h — высота цилиндра.
Заключение
В конце статьи назрел вопрос: а так ли необходимы все эти вычисления и переводы одних значений в другие. Зачем все это нужно и самое главное, для кого? Но не стоит пренебрегать и забывать простые формулы из средней школы.
Мир стоял и будет стоять на элементарных познаниях, из математики, в том числе. И, приступая к какой-нибудь важной работе, никогда не лишне освежить в памяти данные выкладки, применив их на практике с большим эффектом. Точность – вежливость королей.