При вращении прямоугольника вокруг своей стороны получается геометрическое тело, называемое цилиндром. Данная геометрическая фигура ограничена цилиндрической поверхностью и двумя пересекающими ее параллельными плоскостями — основаниями цилиндра. Радиусом считается отрезок, соединяющий на плоскости основания точку центральной оси цилиндра с точкой его поверхности.
— Если известен объем и высота цилиндра, можно найти его радиус, как корень квадратный из объема деленного на произведение числа пи на высоту цилиндра:
- R = √V / πh
- S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr 2 =πr (2h+r)
- S (б.п.) = hP = 2πrh
- r = S (б.п.) / 2πh
- 2S (осн.) = πr 2
- r = √S (осн.) / π
- S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr 2
- Нахождение радиуса цилиндра: формула и примеры
- Формулы вычисления радиуса цилиндра
- 1. Через объем и высоту
- 2. Через площадь боковой поверхности
- 3. Через полную площадь поверхности
- Примеры задач
- Нахождение радиуса вписанного в цилиндр шара (сферы)
- Нахождение радиуса шара/сферы
- 1. Шар/сфера касается обоих оснований и боковой поверхности цилиндра
- 2. Шар/сфера касается только оснований цилиндра
- 3. Шар/сфера касается только боковой поверхности цилиндра
- Радиус и высота цилиндра
- Свойства
- Радиус и объем цилиндра
- Свойства
- Радиус и диагональ цилиндра
- Свойства
- Нахождение радиуса/площади/объема описанной вокруг цилиндра сферы (шара)
- Нахождение радиуса сферы/шара
- Задачи на тему «Цилиндр»
- Основные нюансы, которые стоит вспомнить
- Как подготовиться к экзамену качественно и эффективно?
- 🌟 Видео
R = √V / πh
где V — объем цилиндра, h — высота.
Полная площадь поверхности цилиндра складывается из сумм площадей его боковой поверхности и двух оснований:
S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr 2 =πr (2h+r)
Площадь боковой поверхности равняется длине окружности основания умноженной на высоту:
S (б.п.) = hP = 2πrh
— Если известна площадь бок. поверхности S (б.п.) и высота h цилиндра, радиус будет равен частному от деления S (б.п.) на произведение 2пи на высоту:
r = S (б.п.) / 2πh
Площадь двух оснований равна удвоенному произведению пи на радиус в квадрате:
2S (осн.) = πr 2
— Если известна площадь основания и высота, радиус находим как корень квадратный из площади одного основания деленного на пи:
r = √S (осн.) / π
S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr 2
где S (п.п.) — полная площадь поверхности цилиндра; r — радиус; h — высота.
Видео:Цилиндр - расчёт площади, объёма.Скачать
Нахождение радиуса цилиндра: формула и примеры
В данной публикации мы рассмотрим, как можно вычислить радиус цилиндра и разберем примеры решения задач для закрепления материала.
Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать
Формулы вычисления радиуса цилиндра
1. Через объем и высоту
Радиус цилиндра рассчитывается по формуле:
V – объем цилиндра; считается как произведение числа π на высоту фигуры на квадрат радиуса круга, являющего ее основанием.
- R – радиус основания цилиндра, т.е. окружности;
- π – число, округленное значение которого равняется 3,14.
2. Через площадь боковой поверхности
Радиус цилиндра считается таким образом:
Sбок. – площадь боковой поверхности цилиндра; равна произведению длины окружности (2 π R), являющейся основанием фигуры, на его высоту:
3. Через полную площадь поверхности
Данная формула получена следующим образом:
S – полная площадь поверхности фигуры, равная:
S = 2 π Rh + 2 π R 2 или S = 2 π R(h + R)
Возьмем первое выражение. Если перенести S в правую часть, получим:
2 π R 2 + 2 π Rh – S = 0
Можно заметить, что это квадратное уравнение вида ax 2 + bx + c = 0, где:
R является корнем данного уравнения (x). Подставив в стандартную формулу для расчета корней наши значения a, b и с получаем*:
* в нашем случае – только один положительный корень, т.к. радиус не может быть отрицательным.
Видео:Объём цилиндраСкачать
Примеры задач
Задание 1
Высота цилиндра равняется 5 см, а объем – 141,3 см 3 . Вычислите его радиус.
Решение:
Воспользуемся соответствующей формулой, подставив в нее известные по условиям задачи значения:
Задание 2
Найдите радиус цилиндра, если площадь его боковой поверхности равна 175,84 см 2 , а высота составляет 7 см.
Решение:
Применим формулу, в которой задействованы заданные величины:
Задание 3
Рассчитайте радиус цилиндра, если полная площадь его поверхности – 602,88 см 2 , а высота – 10 см.
Решение:
Используем третью формулу для нахождения неизвестной величины:
Видео:Длина окружности. Математика 6 класс.Скачать
Нахождение радиуса вписанного в цилиндр шара (сферы)
В данной публикации мы рассмотрим, чему равняется радиус вписанного в прямой цилиндр шара или сферы. Информация сопровождается рисунками для лучшего восприятия.
Читайте также: Теплоизолированный цилиндр расположенный горизонтально 300 900
Видео:Объем цилиндра.Скачать
Нахождение радиуса шара/сферы
Радиус зависит от того, как именно шар (сфера) вписан в цилиндр. Сделать это можно тремя способами:
1. Шар/сфера касается обоих оснований и боковой поверхности цилиндра
2. Шар/сфера касается только оснований цилиндра
Радиус (R) составляет половину высоты (h) цилиндра.
3. Шар/сфера касается только боковой поверхности цилиндра
В данном случае радиус (R) шара равняется радиусу (R) оснований цилиндра.
Примечание: еще раз подчеркнем, что вышеизложенная информация применима только к прямому цилиндру.
Видео:Видеоурок по математике "Цилиндр"Скачать
Радиус и высота цилиндра
Видео:11 класс. Геометрия. Объем цилиндраСкачать
Свойства
Зная радиус цилиндра r, можно сразу найти его диаметр D и периметр окружности P, лежащей в его основании. Диаметр цилиндра является величиной в два раза большей радиуса по значению, а периметр окружности равен произведению диаметра на число π. D=2r P=2πr
Зная радиус и высоту цилиндра можно вычислить все необходимые параметры, такие как, например, площадь поверхности цилиндра или его объем, диагональ цилиндра и так далее. Площадь поверхности цилиндра может быть полной или только боковой, разница заключается в том, что для полной поверхности необходимо прибавить к боковой еще два основания. S_(б.п.)=hP=2πrh S_(п.п.)=S_(б.п.)+2S_(осн.)=2πrh+πr^2=πr(2h+r)
Объем цилиндра равен произведению его площади основания на высоту, то есть произведению числа π на высоту и квадрат радиуса. V=πr^2 h
Чтобы найти диагональ цилиндра, необходимо провести диаметр в основании таким образом, чтобы он соединял диагональ с высотой цилиндра, расположенной на его боковой поверхности. Тогда из образованного прямоугольного треугольника, можно вычислить диагональ цилиндра через радиус и высоту цилиндра по теореме Пифагора. (рис.25.1) d=√(D^2+h^2 )=√(4r^2+h^2 )
В цилиндр можно вписать сферу только тогда, когда диаметр его основания равен его высоте. То же самое касается и сферы описанной вокруг цилиндра. Радиус вписанной в цилиндр сферы равен радиусу окружности, лежащей в основании сферы, или половине высоты, а радиус сферы описанной около цилиндра равен половине его диагонали. (рис.25.2, 25.3) r_1=r=h/2 R=d/2=√(4r^2+h^2 )/2
Видео:Объем цилиндраСкачать
Радиус и объем цилиндра
Видео:Радиус и диаметрСкачать
Свойства
Периметр основания цилиндра через радиус может быть выражен как удвоенное произведение его на число π, или как произведение диаметра на число π, поскольку диаметр окружности равен двум радиусам. D=2r P=2πr
Зная радиус и объем цилиндра, можно найти его высоту, разделив объем на произведение квадрата радиуса и числа π. h=V/(πr^2 )
Площадь боковой и полной поверхности цилиндра можно найти через радиус и высоту, или через радиус и объем за неимением высоты. Площадь боковой поверхности цилиндра равна отношению удвоенного объема к двум радиусам. Площадь полной поверхности цилиндра равна сумме площади боковой поверхности и двух площадей основания, то есть произведения числа π на квадрат радиуса цилиндра. S_(б.п.)=hP=2πrh=2πr V/(πr^2 )=2V/r S_(п.п.)=S_(б.п.)+2S_(осн.)=2V/r+πr^2
Диагональ цилиндра можно вычислить по теореме Пифагора из прямоугольного треугольника, который образован диаметром окружности в основании цилиндра и высотой цилиндра. (рис.25.1) d=√(D^2+h^2 )=√(4r^2+h^2 )=√(4r^2+(V/(πr^2 ))^2 )=√(4r^2+V^2/(π^2 r^4 ))
Если диаметр окружности, лежащей в основании цилиндра, равен его высоте, то в такой цилиндр можно вписать сферу, или описать сферу вокруг него. Радиус сферы, вписанной в цилиндр, равен радиусу самого цилиндра, так как окружность вращения сферы совпадает по размерам с окружность в основании цилиндра. Радиус сферы, описанной вокруг цилиндра, равен половине диагонали, так как сфера пересекается с цилиндром именно в точках, являющихся вершинами диагоналей, следовательно, последние совпадают с диаметром сферы. (рис.25.2,25.3) r_1=r R=d/2=√(4r^2+V^2/(π^2 r^4 ))/2
Видео:11 класс, 32 урок, Объем цилиндраСкачать
Радиус и диагональ цилиндра
Видео:Высота второго цилиндра в три раза больше, а радиус в два раза меньше, чем у первого. Найти объемСкачать
Свойства
Через радиус цилиндра можно найти его диаметр и периметр окружности, которая находится в основании цилиндра, не прибегая к дополнительным вычислениям. Чтобы найти диаметр цилиндра, нужно умножить его радиус на два, а чтобы найти периметр окружности, нужно его умножить на два числа π. D=2r P=2πr
Чтобы узнать все остальные параметры цилиндра, необходимо сначала найти высоту. Через диагональ цилиндра это можно сделать, построив с высотой прямоугольный треугольник, и составив в нем теорему Пифагора. (рис.25.1) h=√(d^2-D^2 )
Читайте также: Прямоугольный параллепипед описанный около цилиндра
Площадь боковой и полной поверхности зависит от высоты и радиуса цилиндра, но можно также найти площадь цилиндра через радиус и диагональ. Для этого вместо высоты впишем в формулу квадратный корень из разности квадрата диагонали и четырех квадратов радиуса. S_(б.п.)=hP=2πrh=2πr√(d^2-〖4r〗^2 ) S_(п.п.)=S_(б.п.)+2S_(осн.)=πr(2√(d^2-〖4r〗^2 )+r)
Объем цилиндра представлен обычно произведением площади его основания на высоту, но для того чтобы вычислить объем цилиндра через радиус и диагональ необходимо умножить число π на квадрат радиуса и квадратный корень, соответствующий высоте. V=πr^2 h=πr^2 √(d^2-〖4r〗^2 )
Радиус сферы, которую можно вписать в цилиндр, должен быть равен радиусу самого цилиндра – это непременное условие для возможности совмещения этих двух тел. Более того, в таком случае радиус цилиндра должен быть ровно в два раза меньше его высоты, чтобы вписанная сфера соприкасалась не только с боковой поверхностью цилиндра, но и основаниями. (рис. 25.2) r_1=r
Условия для сферы, описанной около цилиндра, совпадают с условиями для вписанной сферы. При их соблюдении радиус сферы становится равным половине диагонали цилиндра. (рис.25.3) R=d/2
Видео:Найти радиус основания цилиндраСкачать
Нахождение радиуса/площади/объема описанной вокруг цилиндра сферы (шара)
В данной публикации мы рассмотрим, как найти радиус описанной вокруг прямого цилиндра сферы, а также площадь ее поверхности и объем шара, ограниченного этой сферой.
Видео:11 класс, 15 урок, Площадь поверхности цилиндраСкачать
Нахождение радиуса сферы/шара
Около любого цилиндра можно описать сферу (или другими словами, вписать цилиндр в шар) – но только одну.
- Центром такой сферы будет являться центр цилиндра, в нашем случае – это точка O.
Можно заметить, что радиус описанной сферы (OE), половина высоты цилиндра (OO1) и радиус его основания (O1E) образовывают прямоугольный треугольник OO1E.
Воспользовавшись теоремой Пифагора мы можем найти гипотенузу этого треугольника, которая одновременно является радиусом сферы, описанной около заданного цилиндра:
Зная радиус сферы можно вычислить площадь (S) ее поверхности и объем (V) ограниченного сферой шара:
Примечание: π округленно равняется 3,14.
Видео:Задача про ЦИЛИНДР / Как найти объем детали? / Профиль ЕГЭСкачать
Задачи на тему «Цилиндр»
\(\blacktriangleright\) Ось цилиндра – прямая, соединяющая центры его оснований.
Отрезок, соединяющий центры оснований – высота.
\(\blacktriangleright\) Образующая цилиндра – перпендикуляр, проведенный из точки границы одного основания к другому основанию.
Заметим, что образующая и высота цилиндра равны друг другу.
\(\blacktriangleright\) Площадь боковой поверхности цилиндра \( >=2\pi rh>>\) , где \(r\) – радиус основания, \(h\) – высота (или образующая).
\(\blacktriangleright\) Площадь полной поверхности цилиндра равна сумме площади боковой поверхности и площадей оснований. \[ >=2\pi rh+2\pi r^2>>\]
\(\blacktriangleright\) Объем цилиндра \( >\cdot h=\pi r^2h>>\)
Заметим, что прямой цилиндр имеет некоторое сходство с прямой призмой, только в ее основаниях лежат многоугольники (граница которых – ломаная), а в основаниях цилиндра – круги (граница которых гладкая).
Поэтому можно сказать, что боковая поверхность прямой призмы “ребристая”, а цилиндра – “гладкая”.
Про прямые круговые цилиндры \(C_1\) и \(C_2\) известно, что у \(C_1\) радиус основания в два раза больше, чем у \(C_2\) , но у \(C_2\) высота в три раза больше, чем у \(C_1\) . Найдите отношение объёма цилиндра \(C_2\) к объёму \(C_1\) .
Обозначим высоту цилиндра \(C_1\) через \(h_1\) , а высоту цилиндра \(C_2\) через \(h_2\) . Обозначим радиус основания цилиндра \(C_1\) через \(r_1\) , а радиус основания цилиндра \(C_2\) через \(r_2\) . Тогда \[r_1 = 2r_2,\qquad h_2 = 3h_1\,.\]
Объём цилиндра \(C_1\) равен \(\pi ^2 h_1 = 4\pi ^2 h_1\) , а объём цилиндра \(C_2\) равен \(3\pi ^2 h_1\) , тогда \[\dfrac > > = \dfrac ^2 h_1> ^2 h_1> = 0,75\]
Объем цилиндра равен \(64\pi\) , а площадь боковой поверхности равна \(32\pi\) . Найдите площадь полной поверхности цилиндра, деленную на \(\pi\) .
Формулы для нахождения объема и боковой поверхности цилиндра: \(V = \pi R^2 h\) , \(S_ > = 2\pi R h\) . Зная величину объема и боковой поверхности, можно выразить радиус цилиндра: \[\frac >> = \frac = \frac = \frac = 2\] \(\Rightarrow\) \(R = 4\) . Площадь полной поверхности складывается из площади боковой поверхности и площадей двух оснований: \[S_ > = 2\pi R h + 2 \pi R^2 = 32\pi + 2 \cdot 16\pi = 64\pi.\] Осталось разделить полученный объем на \(\pi\) , тогда окончательно получаем \(64\) .
Читайте также: Пыльник тормозного цилиндра газель некст
Объем цилиндра равен \(100\pi\) , а площадь боковой поверхности равна \(25\pi\) . Найдите высоту цилиндра.
Формулы для нахождения объема и боковой поверхности цилиндра: \(V = \pi R^2 h\) , \(S_ > = 2\pi R h\) . Зная величину объема и боковой поверхности, можно выразить радиус цилиндра: \[\frac >> = \frac = \frac = \frac = 4\] \(\Rightarrow\) \(R = 8\) . Подставим значение радиуса в формулу объема и найдем из этой формулы искомую высоту: \[V = \pi R^2 h = 64\pi h = 100\pi\] \(\Rightarrow\) \(\displaystyle h = \frac = 1,5625\) .
Объём цилиндра \[V = \dfrac >,\] а отношение радиуса его основания к его высоте равно \(5\) . Найдите площадь полной поверхности этого цилиндра.
\[V_ > = \pi R^2 H = \dfrac >,\] \(\dfrac = 5\) , где \(R\) – радиус основания цилиндра, \(H\) – его высота, тогда \(R = 5H\) , следовательно, \[\pi \cdot 25 H^3 = \dfrac >\qquad\Rightarrow\qquad H^3 = \dfrac >,\] откуда \(H = \dfrac >\) , \(R = \dfrac >\) . \[S_ > = 2\pi R H + \pi R^2 = 2\pi R(H + R) = 2\pi\cdot\dfrac >\cdot\dfrac > = 240.\]
\(AD\) – ось цилиндра, \(BC\) – его образующая, \(S_ = \dfrac > >\) , \(\angle CAD = 60^\circ\) . Найдите объём цилиндра.
Так как \(AD\) и \(BC\) – высоты цилиндра, то \(ABCD\) – прямоугольник, тогда \[S_ = AD\cdot DC = H\cdot R = \dfrac > >.\]
Рассмотрим прямоугольный треугольник \(ADC\) :
Т.к. \(\angle DAC = 60^\circ\) , то \[AD = \mathrm \, \angle ACD\cdot DC = \mathrm \, 30^\circ\cdot R = \dfrac >,\] т.е. \(H = \dfrac >\) или \(R = \sqrt H\) .
Повторение базовой теории и формул, в том числе и тех, которые позволяют выполнить расчет объема цилиндра, — один из основных этапов подготовки к ЕГЭ. Несмотря на то, что эта тема достаточно подробно рассматривается на уроках математики в школе, с необходимостью вспомнить основной материал и «прокачать» навык решения задач сталкиваются многие учащиеся. Понимая, как вычислить объем и другие неизвестные параметры цилиндра, старшеклассники смогут получить достаточно высокие баллы по итогам сдачи единого государственного экзамена.
Видео:ЕГЭ-2020: Изменение объёма цилиндраСкачать
Основные нюансы, которые стоит вспомнить
Чтобы вопрос, как посчитать объем цилиндра и выполнить измерение других неизвестных параметров при решении задач, не ставил ученика в тупик, рекомендуем повторить основные свойства этой фигуры прямо сейчас в режиме онлайн.
- Цилиндр представляет собой тело, которое ограничено цилиндрической поверхностью и двумя кругами. Цилиндрическая поверхность является боковой. А круги представляют собой основания фигуры.
- Высота цилиндра есть расстояние между плоскостями его оснований.
- Все его образующие являются параллельными и равными между собой.
- Радиус цилиндра есть радиус его основания.
- Фигура называется прямой, если ее образующие перпендикулярны основаниям.
Видео:🔴 Даны два цилиндра. Радиус основания и высота ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать
Как подготовиться к экзамену качественно и эффективно?
Занимаясь накануне прохождения аттестационного испытания, многие учащиеся сталкиваются с проблемой поиска необходимой информации. Далеко не всегда школьный учебник оказывается под рукой, когда это требуется. А найти формулы, которые помогут рассчитать площадь и другие неизвестные параметры цилиндра, часто бывает достаточно сложно даже в Интернете в онлайн-режиме.
Занимаясь вместе с математическим порталом «Школково», выпускники смогут избежать типовых ошибок и успешно сдать единый госэкзамен. Мы предлагаем выстроить процесс подготовки по-новому, переходя от простого к сложному. Это позволит учащимся определить непонятные для себя тематики и ликвидировать пробелы в знаниях.
Весь базовый материал, который поможет в решении задач на тему «Цилиндр», выпускники смогут найти в разделе «Теоретическая справка». Специалисты «Школково» изложили с доступной форме все необходимые определения и формулы.
Для закрепления полученных знаний учащиеся могут попрактиковаться в решении задач на тему «Цилиндр» и другие темы, например, нахождение площади или объема конуса. Большая, постоянно обновляющаяся подборка заданий представлена в разделе «Каталог».
Чтобы во время подготовки к ЕГЭ быстро найти конкретную задачу по теме «Цилиндр» и освежить в памяти алгоритм ее решения, выпускники могут предварительно сохранить ее в «Избранное». Отрабатывать собственные навыки на нашем сайте имеют возможность не только столичные школьники, но и учащиеся из других российских городов.
🌟 Видео
Длина окружности. Площадь круга - математика 6 классСкачать
Объем цилиндра.Скачать
Объем шара и цилиндра. Практическая часть. 11 класс.Скачать
ПЛОЩАДЬ боковой поверхности ЦИЛИНДРАСкачать