Как найти расстояние между плоскостями сечений цилиндра

Авто помощник

Видео:Определение кратчайшего расстояние между скрещивающимися прямыми методом замены плоскостей проекцииСкачать

Определение кратчайшего расстояние между скрещивающимися прямыми методом замены плоскостей проекции

Как найти расстояние между плоскостями сечений цилиндра

Ц илиндр, получается в результате вращения прямоугольника вокруг одной из его сторон.

  • Цилиндр состоит из двух кругов и множества отрезков .
  • Цилиндр – это геометрическое тело, состоящее из двух равных кругов, расположенных в параллельных плоскостях и множества отрезков, соединяющих соответственные точки этих кругов.
  • Определения элементов цилиндра :

Основания цилиндра – равные круги, расположенные в параллельных плоскостях

Высота цилиндра — это расстояние между плоскостями его оснований.

Ось цилиндра – это прямая, проходящая через центры основания цилиндра (ось цилиндра является осью вращения цилиндра).

Осевое сечение цилиндра – сечение цилиндра плоскостью, проходящей через ось цилиндра (осевое сечение цилиндра является плоскостью симметрии цилиндра). Все осевые сечения цилиндра – равные прямоугольники

Образующая цилиндра — это отрезок соединяющий точку окружности верхнего основания с соответственной точкой окружности нижнего основания. Все образующие параллельны оси вращения и имеют одинаковую длину, равную высоте цилиндра.

Образующая цилиндра при вращении вокруг оси образует боковую (цилиндрическую) поверхность цилиндра .

Радиус цилиндра – это радиус его основания.

Прямой цилиндр – это цилиндр, образующие которого перпендикулярны основанию.

Равновеликий цилиндр – цилиндр, у которого высота равна диаметру (показать равновеликий цилиндр: кнопкой со значком руки перевести модель обратно в интерактивный режим и изменить значение высоты и радиуса у предложенной модели так, чтобы ).

    Вывод формулы площади боковой поверхности.

Разверткой боковой поверхности цилиндра является прямоугольник со сторонами H и C , где H – высота цилиндра, а C – длина окружности основания. Получим формулы для вычисления площадей боковой S б и полной S п поверхностей: S б = H · C = 2π RH , S п = S б + 2 S = 2π R ( R + H ).

Задача № 1. Вычислить площадь боковой и полной поверхности цилиндра, у которого радиус равен 3 см, а высота 5 см (число пи и ответ округлить до целых).

2. Высота цилиндра равна h , радиус основания R . Найти площадь сечения плоскостью, проведенной параллельно оси цилиндра на, расстоянии a от нее.

Домашнее задание: 522, 524, 526.

Р.S/ кому интересно попрбуйте пройти по ссылке и посмотреть электронный ресурс про цилиндр

для начала на странице установите у себя на ПК модуль ОМS и закачайте модуль. На выскочившей таблице кликните воспроизвести. А дальше по порядку просмотрите все странички.
ВСЕМ СПАСИБО.

Видео:Расстояние между параллельными плоскостямиСкачать

Расстояние между параллельными плоскостями

Стереометрия. Страница 6

Как найти расстояние между плоскостями сечений цилиндра

Видео:Задание 38. Как построить УСЕЧЕННЫЙ ЦИЛИНДР. Построение НВ фигуры сечения. Часть 1Скачать

Задание 38. Как построить УСЕЧЕННЫЙ ЦИЛИНДР.  Построение НВ фигуры сечения. Часть 1

1. Цилиндр

Цилиндр представляет собой тело, состоящее из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов (Рис.1).

Два круга, лежащих в параллельных плоскостях, называются основаниями цилиндра. Отрезки, соединяющие соответствующие точки окружностей кругов, называются образующими.

Так как основания совмещаются параллельным переносом, то они равны. И так как они лежат в параллельных плоскостях, то образующие цилиндра параллельны и равны.

Читайте также: Тормозные цилиндры ваз 2107 передние ремкомплект

Если образующие перпендикулярны основанию, то цилиндр называется прямым.

Поверхность цилиндра состоит из двух оснований и боковой поверхности. Боковая поверхность состоит из образующих.

Осью цилиндра называется прямая, проходящая через центры оснований. Радиусом цилиндра называется радиус его основания. А высотой цилиндра называется расстояние между плоскостями его оснований.

Видео:Построение линии пересечения поверхности цилиндра с проецирующей плоскостиСкачать

Построение линии пересечения поверхности цилиндра с проецирующей плоскости

Сечение цилиндра плоскостями

Если взять сечение цилиндра плоскостью, проходящей по его оси, то получится прямоугольник. (Рис.1) Такое сечение называется осевым. Сечение цилиндра плоскостью, параллельной его оси, также представляет собой прямоугольник. Две его стороны — образующие цилиндра, а две другие стороны — параллельные хорды оснований.

Теорема. Плоскость сечения цилиндра, параллельная его плоскости основания, пересекает его боковую поверхность по окружности, равной окружности основания. (Рис.1.1)

Пусть плоскость α — секущая плоскость, параллельная основанию. Подвергнем плоскость α движению в верх вдоль оси цилиндра. Параллельным переносом совместим плоскость α с плоскостью верхнего основания цилиндра. Таким образом сечение боковой поверхности совпадет с окружностью верхнего основания. Теорема доказана.

Как найти расстояние между плоскостями сечений цилиндра

Как найти расстояние между плоскостями сечений цилиндра

Рис. 1.1 Сечения цилиндра плоскостями.

Видео:✓ Как решать стереометрию | ЕГЭ-2024. Математика. Профильный уровень. Задание 14 | Борис ТрушинСкачать

✓ Как решать стереометрию | ЕГЭ-2024. Математика. Профильный уровень. Задание 14 | Борис Трушин

2.Конус

Конусом называется тело, которое состоит из круга — основания конуса, точки, не лежащей в плоскости основания этого конуса — вершины конуса и всех отрезков, соединяющих вершину с точками основания (Рис.2).

Точка, не лежащая в плоскости основания, называется вершиной конуса. Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими конуса.

Конус называется прямым, если прямая, проведенная из вершины конуса в центр основания, перпендикулярна плоскости основания.

Высотой конуса называется перпендикуляр, опущенный из вершины конуса на плоскость основания. Осью прямого кругового конуса называется прямая, содержащая его высоту.

Видео:Как найти угол между прямой и плоскостью? СТЕРЕОМЕТРИЯ | TutorOnlineСкачать

Как найти угол между прямой и плоскостью?  СТЕРЕОМЕТРИЯ | TutorOnline

Сечение конуса плоскостями

Сечение прямого конуса плоскостью, которая проходит через его вершину, представляет собой равнобедренный треугольник. Боковые стороны этого треугольника являются образующими конуса. Сечение, которое проходит через ось конуса, называется осевым.

Теорема. Сечение конуса плоскостью, параллельной основанию, есть круг с центром на оси конуса.

Доказательство. Пусть α — плоскость, параллельная основанию (Рис 2.1). Плоскость α пересекает конус по кругу. Подвергнем сечение конуса гомотетии относительно вершины конуса. Т.е. совместим плоскость α с плоскостью основания конуса. Сечение конуса полностью совпадет с основанием. Следовательно сечение конуса плоскостью есть круг, а сечение боковой поверхности — окружность с центром на оси конуса.

Как найти расстояние между плоскостями сечений цилиндра

Как найти расстояние между плоскостями сечений цилиндра

Видео:Усеченный цилиндр: проекции сечения, изометрия, развертка поверхностиСкачать

Усеченный цилиндр: проекции сечения, изометрия, развертка поверхности

3. Вписанная и описанная призма

Призма, вписанная в цилиндр, называется призма, у которой плоскости основания совпадают с плоскостями оснований цилиндра, а боковые ребра являются образующими цилиндра.

Призма, описанная около цилиндра, называется призма, у которой плоскости оснований совпадают с плоскостями оснований цилиндра, а боковые грани касаются цилиндра (Рис.3).

Если плоскость проходит через образующую цилиндра и перпендикулярна осевому сечению, то она называется касательной плоскостью к цилиндру.

Как найти расстояние между плоскостями сечений цилиндра

Рис. 3 Описанная и вписанная призма.

Видео:Видеоурок "Расстояние между прямыми в пространстве"Скачать

Видеоурок "Расстояние между прямыми в пространстве"

4.Вписанная и описанная пирамида

Пирамида, вписанная в конус, называется пирамида, у которой вершина совпадает с вершиной конуса, а многоугольник в основании вписан в окружность основания конуса.

Пирамидой, описанной около конуса, называется пирамида, у которой вершина совпадает с вершиной конуса, а в многоугольник основания вписано основание окружности конуса.

Читайте также: Прямоугольный параллелепипед описан около цилиндра как найти высоту цилиндра

Касательной плоскостью к конусу называется плоскость, проходящая через образующую конуса (плоскость α) и перпендикулярная плоскости осевого сечения (плоскость β), проходящей через эту образующую (Рис.4).

Как найти расстояние между плоскостями сечений цилиндра

Рис. 4 Вписанная и описанная пирамида.

Видео:✓ Расстояние между скрещивающимися прямыми | ЕГЭ-2018. Задание 14. Математика | Борис ТрушинСкачать

✓ Расстояние между скрещивающимися прямыми | ЕГЭ-2018. Задание 14. Математика | Борис Трушин

5. Шар

Шар это геометрическое тело, состоящее из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки. (Рис.5). Точка, от которой все остальные точки находятся на расстоянии не большем данного, называется центром шара.

Граница шара называется сферой. Совокупность всех точек сферы удалена от центра на расстояние, равное радиусу. Таким образом, любой отрезок, соединяющий центр шара с точкой сферы, называется радиусом.

Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром. Концы любого диаметра называются диаметрально противоположными точками шара.

Как найти расстояние между плоскостями сечений цилиндра

Видео:7. Расстояние от точки до плоскости (вывод формулы примеры)Скачать

7. Расстояние от точки до плоскости (вывод формулы примеры)

Сечение шара плоскостью

Если секущая плоскость проходит через центр шара, например плоскость α, то она называется диаметральной плоскостью. А сечение называется большим кругом (Рис.5.1).

Если секущая плоскость не проходит через центр шара, то в сечении получится также круг. Сформулируем следующую теорему.

Теорема. Любое сечение шара представляет собой круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Пусть β — секущая плоскость. Проведем перпендикуляр из центра шара точки O на плоскость β. Обозначим основание перпендикуляра точкой O’.

Как найти расстояние между плоскостями сечений цилиндра

Как найти расстояние между плоскостями сечений цилиндра

Рис. 5.1 Сечение шара плоскостью.

Видео:Определение кратчайшей расстояние от точки до плоскости способом замены плоскостей проекцииСкачать

Определение кратчайшей расстояние от точки до плоскости способом замены плоскостей проекции

6. Симметрия шара

Теорема. Центр шара является его центром симметрии, а любая диаметральная плоскость является его плоскостью симметрии.

Доказательство. Пусть α — диаметральна плосксоть шара, а Y его произвольная точка (Рис.6). Построим точку Y’, симметричную точке Y относительно плоскости α. Так как отрезок YY’ перпендикулярен плоскости α и делится этой плоскостью пополам точкой пересечения А, то треугольники OYA и OY’A равны по двум сторонам и углу между ними, т.е. OY=OY’. Отрезки OY и OY’ принадлежат шару, так как OY = OY’ ≤ R.

Отложим отрезок OY» симметрично относительно центра шара точки О. Тогда OY = OY» ≤ R. Т.е. точка Y» также принадлежит шару. Следовательно точка О является точкой симметрии шара, а диаметральная плоскость — плоскостью симметрии.

Как найти расстояние между плоскостями сечений цилиндра

7. Пример 1

Радиус основания цилиндра 2 м, высота 3 м. Найдите диагональ осевого сечения.

Пусть дан цилиндр высотой 3 м и радиусом 2 м (Рис.7). По теореме Пифагора найдем АС:

AС 2 = AD 2 + CD 2 = 4 2 + 3 2 = 25

Как найти расстояние между плоскостями сечений цилиндра

Рис.7 Задача. Радиус основания цилиндра 2 м.

Пример 2

Высота цилиндра 6 м, радиус основания 5 м. Концы отрезка DC’, длина которого 10 м, лежат на окружностях оснований. Найдите расстояние от этого отрезка до оси цилиндра.

Пусть дан цилиндр высотой 6 м с радиусом основания 5 м и отрезком DC’ = 10 м (Рис. 8). Проведем два перпендикуляра C’C и D’D. Так как эти перпендикуляры параллельны, то проведем через них плоскость α. Теперь проведем плоскость β через ось O’O, параллельную плоскости α.

Таким образом, получается, что через две скрещивающиеся прямые OO’ и DC’ проходят две параллельные плоскости α и β. Расстояние между скрещивающимися прямыми равно расстоянию между двумя параллельными плоскостями, в которых эти прямые лежат.

Читайте также: Ремкомплект главного тормозного цилиндра додж неон 2

Отсюда следует, что длина перпендикуляра ОЕ и будет расстояние от отрезка DC’ до оси цилиндра OO’.

Найдем хорду DC из прямоугольного треугольника DC’C:

DC 2 = 10 2 — 6 2 = 64, DC = 8 м.

Теперь из прямоугольного треугольника OED найдем ОЕ:

ОЕ 2 = OD 2 — DE 2 = 5 2 — 4 2 = 9

Как найти расстояние между плоскостями сечений цилиндра

Рис.8 Задача. Высота цилиндра 6 м.

Пример 3

Высота конуса 20 м, радиус основания 25 м. Найдите площадь сечения, проведенного через вершину, если расстояние от него до центра основания конуса равно 12 м.

Пусть дан конус высотой 20 м с радиусом основания 25 м. OF = 12 м (Рис. 9). Найдем синус угла OSF из прямоугольного треугольника OSF.

sin OSF = OF / SO = 12 / 20 = 3/5, следовательно, cos OSF = 4/5

Из прямоугольного треугольника OSC найдем SC:

cos OSC = SO / SC, SC = SO / cos OSC = 20/4/5 = 25 м

По теореме Пифагора найдем ОС:

ОC 2 = SC 2 — SO 2 = 25 2 — 20 2 = 225, OC = 15 м.

Из прямоугольного треугольника АОС найдем АC:

АC 2 = АО 2 — ОС 2 = 25 2 — 15 2 = 400, АC = 20 м.

Таким образм, площадь сечения равна:

SASB = AC * SC = 20 * 25 = 500 м 2 .

Как найти расстояние между плоскостями сечений цилиндра

Рис.9 Задача. Высота конуса 20 м.

Пример 4

Высота конуса 10 м. Радиус основания 6 м. На каком расстоянии от вершины необходимо провести плоскость, параллельную основанию, чтобы площадь сечения была равна половине площади основания.

Пусть дан конус высотой 10 м и радиусом основания 6 м (Рис. 10). Обозначим площадь основания как Sб, а площадь сечения как Sм. Найдем площадь большего основания Sб:

Sб = π R 2 = π 6 2 = 36π м 2

Соответственно площадь малого основания Sм будет равна:

Sм = Sб / 2 = 36π / 2 = 18π м 2

Как найти расстояние между плоскостями сечений цилиндра

Отсюда, радиус сечения СА равен

Как найти расстояние между плоскостями сечений цилиндра

Рассмотрим треугольники BOS и CAS. Они подобны. Коэффициент подобия составляет k = CA / BO = / 6

Отсюда следует, что SA = k SO = 10 Как найти расстояние между плоскостями сечений цилиндра/ 6 = 5 Как найти расстояние между плоскостями сечений цилиндрам

Как найти расстояние между плоскостями сечений цилиндра

Таким образом, для того чтобы площадь сечения составляла половину площади основания, расстояние от вершины конуса до плоскости сечения должно составлять 5 м.

Как найти расстояние между плоскостями сечений цилиндра

Рис.10 Задача. Высота конуса 10 м.

Пример 5

Радиусы оснований усеченного конуса 4 м и 12 м, образующая 10 м. Найдите площадь осевого сечения.

Пусть дан усеченный конус. Образующая АС = 10 м и радиусы оснований СЕ = 4 м, АО = 12 м (Рис. 11). Осевое сечение усеченного конуса представляет собой равнобокую трапецию. Отсюда следует, что площадь сечения можно найти как сумму площадей прямоугольника CFTP и двух равных треугольников АСР и TFB.

Найдем площадь двух треугольников АСР и TFB:

По теореме Пифагора найдем СР:

СР 2 = AC 2 — AР 2 = 10 2 — 8 2 = 36, CP = 6 м

SACP + STFP = 2 SACP = 2 * АР * СР / 2 = 2 * 8 * 6 / 2 = 48 м 2

Теперь найдем площадь прямоугольника SCFTP:

SCFTP = CF * CP = 2 CE * CP = 2 * 4 * 6 = 48 м 2

Таким образом, площадь сечения усеченного конуса составляет:

SАCFВ = SCFTP + 2 SACP = 48 + 48 = 96 м 2 .

Как найти расстояние между плоскостями сечений цилиндра

Рис.11 Задача. Радиусы оснований усеченного конуса 4 м и 12 м.

🔍 Видео

Расстояние между скрещивающимися прямымиСкачать

Расстояние между скрещивающимися прямыми

Построить сечение цилиндра с плоскостью общего положения.Скачать

Построить сечение цилиндра с плоскостью общего положения.

ТЕМА 3. ПРИНЦИПЫ ПЕРЕСЕЧЕНИЯ ЦИЛИНДРА И ШАРА С ПРЯМЫМИ ПЛОСКОСТЯМИСкачать

ТЕМА 3. ПРИНЦИПЫ ПЕРЕСЕЧЕНИЯ ЦИЛИНДРА И ШАРА С ПРЯМЫМИ ПЛОСКОСТЯМИ

✓ Угол между плоскостями | ЕГЭ-2017. Задание 14. Математика. Профильный уровень | Борис ТрушинСкачать

✓ Угол между плоскостями | ЕГЭ-2017. Задание 14. Математика. Профильный уровень | Борис Трушин

Определение кратчайшего расстояния между скрещивающимися прямыми (Способ замены плоскостей проекций)Скачать

Определение кратчайшего расстояния между скрещивающимися прямыми (Способ замены плоскостей проекций)

2 6 1 сечение конуса плоскостьюСкачать

2 6 1 сечение конуса плоскостью

Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)Скачать

Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)

РТ_ПБ_61.1) Построить проекции линии пересечения цилиндра плоскостью частного положения.Скачать

РТ_ПБ_61.1) Построить проекции линии пересечения цилиндра плоскостью частного положения.

10 класс, 19 урок, Расстояние от точки до плоскостиСкачать

10 класс, 19 урок, Расстояние от точки до плоскости
Поделиться или сохранить к себе:
Технарь знаток