Видео:Расстояние между скрещивающимися прямымиСкачать

Расстояние между скрещивающимися прямыми – определение и примеры нахождения.
В этой статье внимание нацелено на нахождение расстояния между скрещивающимися прямыми методом координат. Сначала дано определение расстояния между скрещивающимися прямыми. Далее получен алгоритм, позволяющий найти расстояние между скрещивающимися прямыми. В заключении детально разобрано решение примера.
Видео:#31. Как найти расстояние между скрещивающимися прямыми?Скачать

Расстояние между скрещивающимися прямыми – определение.
Прежде чем дать определение расстояния между скрещивающимися прямыми, напомним определение скрещивающихся прямых и докажем теорему, связанную со скрещивающимися прямыми.
В разделе взаимное расположение прямых в пространстве мы упоминали, что две прямые называются скрещивающимися, если они не лежат в одной плоскости.
Через каждую из скрещивающихся прямых проходит единственная плоскость, которой параллельна другая прямая.
Пусть даны скрещивающиеся прямые a и b . Докажем, что через прямую b проходит единственная плоскость, параллельная прямой a (абсолютно аналогично можно будет доказать, что через прямую a проходит плоскость, параллельная прямой b , притом только одна). Это будет служить доказательством теоремы.
Отметим на прямой b некоторую точку Q . В статье параллельные прямые, параллельность прямых была доказана теорема, гласящая, что через произвольную точку пространстве проходит единственная прямая, параллельная заданной прямой. Следовательно, через точку Q можно провести единственную прямую, параллельную прямой a . Обозначим ее a1 .
В разделе способы задания плоскости мы упоминали, что через две пересекающиеся прямые проходит единственная плоскость (что следует из аксиомы о плоскости, проходящей через три различные точки, не лежащие на одной прямой). Следовательно, через пересекающиеся прямые b и a1 проходит единственная плоскость. Обозначим ее .
Признак параллельности прямой и плоскости позволяет утверждать, что прямая a параллельна плоскости (так как прямая a параллельна прямой a1 , лежащей в плоскости ).
Читайте также: Рабочий цилиндр сцепления для чего акцент
Единственность плоскости следует из единственности прямой, проходящей через заданную точку пространства параллельно заданной прямой.
Теперь можно переходить непосредственно к определению расстояния между скрещивающимися прямыми. Определение расстояния между скрещивающимися прямыми дается через расстояние между прямой и параллельной ей плоскостью.
Расстояние между скрещивающимися прямыми – это расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.
В свою очередь расстояние между прямой и параллельной ей плоскостью есть расстояние от некоторой точки прямой до плоскости. Тогда справедлива следующая формулировка определения расстояния между скрещивающимися прямыми.
Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.
Рассмотрим скрещивающиеся прямые a и b . Отметим на прямой a некоторую точку М1 , через прямую b проведем плоскость , параллельную прямой a , и из точки М1 опустим перпендикуляр М1H1 на плоскость . Длина перпендикуляра M1H1 есть расстояние между скрещивающимися прямыми a и b .
Видео:✓ Расстояние между скрещивающимися прямыми | ЕГЭ-2018. Задание 14. Математика | Борис ТрушинСкачать

Нахождение расстояния между скрещивающимися прямыми – теория, примеры, решения.
При нахождении расстояния между скрещивающимися прямыми основная сложность часто заключается в том, чтобы увидеть или построить отрезок, длина которого равна искомому расстоянию. Если такой отрезок построен, то в зависимости от условий задачи его длина может быть найдена с помощью теоремы Пифагора, признаков равенства или подобия треугольников и т.п. Так мы и поступаем при нахождении расстояния между скрещивающимися прямыми на уроках геометрии в 10-11 классах.
Если же в трехмерном пространстве введена прямоугольная система координат Oxyz и в ней заданы скрещивающиеся прямые a и b , то справиться с задачей вычисления расстояния между заданными скрещивающимися прямыми позволяет метод координат. Давайте его подробно разберем.
Пусть 








Читайте также: Пропуск зажигания во 2 цилиндре шевроле круз
Задача сводится к получению координат точки М1 , лежащей на прямой a , и к нахождению нормального уравнения плоскости .
С определением координат точки М1 сложностей не возникает, если хорошо знать основные виды уравнений прямой в пространстве. А вот на получении уравнения плоскости стоит остановиться подробнее.
Если мы определим координаты 





В качестве точки М2 можно взять любую точку, лежащую на прямой b , так как плоскость проходит через прямую b . Таким образом, координаты точки М2 можно считать найденными.
Осталось получить координаты нормального вектора плоскости . Сделаем это.
Плоскость 













Итак, мы имеем общее уравнение плоскости 

Остается только привести общее уравнение плоскости к нормальному виду 

Таким образом, чтобы найти расстояние между скрещивающимися прямыми a и b нужно:
- определить координаты
и
точек М1 и М2 соответственно, лежащих на прямых a и b соответственно;
- получить координаты
и
направляющих векторов прямых a и b соответственно;
- найти координаты
нормального вектора
плоскости
, проходящей через прямую b параллельно прямой a , из равенства
;
- записать общее уравнение плоскости
как
;
- привести полученное уравнение плоскости
к нормальному виду
;
- вычислить расстояние
от точки
до плоскости
по формуле
— это и есть искомое расстояние между скрещивающимися прямыми a и b .
Читайте также: Датчик тормозного цилиндра ssangyong
В трехмерном пространстве в прямоугольной системе координат Oxyz заданы две скрещивающиеся прямые a и b . Прямую a определяют параметрические уравнения прямой в пространстве вида 

Очевидно, прямая a проходит через точку 



Вычислим векторное произведение векторов 

Таким образом, нормальный вектор 


Тогда уравнение плоскости 


Нормирующий множитель для общего уравнения плоскости 


Осталось воспользоваться формулой для вычисления расстояния от точки 

Это и есть искомое расстояние между заданными скрещивающимися прямыми.
📸 Видео
✓ Расстояние между скрещивающимися прямыми | ЕГЭ-2019. Задание 14. Математика | Борис ТрушинСкачать

Урок 15. Все способы расстояние между скрещивающимися прямыми. Стереометрия с нуля.Скачать

Определение кратчайшего расстояние между скрещивающимися прямыми методом замены плоскостей проекцииСкачать

Расстояние между скрещивающимися прямыми #2Скачать

Урок 02. Расстояние между скрещивающимися прямыми (базовые задачи - куб)Скачать

ЕГЭ по математике - Угол между скрещивающимися прямымиСкачать

Видеоурок "Расстояние между прямыми в пространстве"Скачать

Стереометрия 26 | mathus.ru | расстояние между скрещивающимися прямыми в правильном тетраэдреСкачать

Стереометрия ЕГЭ. Метод координат. Часть 5 из 5. Расстояние между прямымиСкачать

19. Расстояние между параллельными прямыми Расстояние между скрещивающимися прямымиСкачать

ЕГЭ задание 13 Расстояние между скрещивающимися прямымиСкачать

№194. Ребро куба равно а. Найдите расстояние между скрещивающимися прямыми, содержащимиСкачать

10 класс, 7 урок, Скрещивающиеся прямыеСкачать

✓ Как решать стереометрию | ЕГЭ-2024. Математика. Профильный уровень. Задание 14 | Борис ТрушинСкачать

Урок 04. Расстояние между скрещивающимися прямыми (куб)Скачать

Расстояние между скрещивающимися прямыми. Способ перемены плоскостей проекцийСкачать







