Как найти сторону призмы описанной около цилиндра

Авто помощник

Видео:Площадь поверхности призмы. 11 класс.Скачать

Площадь поверхности призмы. 11 класс.

Цилиндры, вписанные в призмы. Свойства призмы, описанной около цилиндра

Как найти сторону призмы описанной около цилиндра

Как найти сторону призмы описанной около цилиндра

Определение 2. Если цилиндр вписан в призму, то призму называют описанной около цилиндра.

Прежде, чем перейти к вопросу о том, в какую же призму можно вписать цилиндр, докажем следующее свойство призм.

Утверждение 1. Если в основания призмы можно вписать окружности, то отрезок, соединяющий центры вписанных окружностей, будет параллелелен и равен боковому ребру призмы.

Как найти сторону призмы описанной около цилиндра

Как найти сторону призмы описанной около цилиндра

Рассуждая аналогичным образом, заключаем, что точка O’ равноудалена от всех прямых, на которых лежат ребра верхнего основания A’1A’2, A’2A’3, . , An – 1An , а поскольку O’ лежит в плоскости верхнего основания, то точка O’ является центром вписанной в многоугольник A’1A’2 . A’n окружности.

В силу того, что прямые OO’ и A1A’1 параллельны по построению, а прямые OA1 и O’A’ параллельны как линии пересечения двух параллельных плоскостей третьей плоскостью, замечаем, что четырехугольник OO’A1A’1 является параллелограммом, откуда вытекает равенство: OO’ = A1A’1 .

Теорема. В призму можно вписать цилиндр тогда и только тогда, когда выполнены следующие два условия:

  1. Призма является прямой призмой;
  2. В основания призмы можно вписать окружности.

Доказательство. Докажем сначала, что если в n – угольную призму вписан цилиндр, то оба условия теоремы выполнены.

Действительно, выполнение условия 2 следует непосредственно из определения цилиндра, вписанного в призму. Докажем, что выполняется и условие 1, т.е. докажем, что описанная около цилиндра призма является прямой призмой.

С этой целью рассмотрим ось цилиндра OO’ , соединяющую центры окружностей, вписанных в нижнее и верхнее основания призмы (рис. 3).

Как найти сторону призмы описанной около цилиндра

Как найти сторону призмы описанной около цилиндра

Согласно утверждению 1 отрезок OO’ параллелен боковым ребрам призмы. Поскольку ось цилиндра OO’ перпендикулярна к плоскостям его оснований, то и боковые ребра призмы также перпендикулярны к плоскостям оснований, то есть призма является прямой призмой.

Таким образом, мы доказали, что, если призма описана около цилиндра, то оба условия теоремы выполнены.

Теперь рассмотрим прямую n – угольную призму высоты h, в основания которой можно вписать окружности, и докажем, что в такую призму можно вписать цилиндр.

Обозначим буквой O центр окружности радиуса r, вписанной в нижнее основание призмы, а символом O’ обозначим центр окружности, вписанной в верхнее основание призмы (рис. 4).

Как найти сторону призмы описанной около цилиндра

Как найти сторону призмы описанной около цилиндра

Поскольку многоугольники, лежащие в основаниях призмы равны, то и радиусы вписанных в них окружностей будут равны. Согласно утверждению 1 отрезок OO’ параллелен и равен боковому ребру призмы. Так как рассматриваемая призма прямая, то ее боковые ребра перпендикулярны плоскости основания и равны высоте призмы h. Значит, и отрезок OO’ перпендикулярен плоскости основания призмы и равен h.

Цилиндр с осью OO’ , радиусом r и высотой h и будет вписан в исходную призму.

Доказательство теоремы завершено.

Читайте также: Вспомогательный рулевой цилиндр актрос

Следствие 1 . Высота призмы, описанной около цилиндра, равна высоте цилиндра.

Следствие 2. В любую прямую треугольную призму можно вписать цилиндр.

Справедливость этого утверждения вытекает из того факта, что в любой треугольник можно вписать окружность.

Следствие 3. В любую правильную n – угольную призму можно вписать цилиндр.

Для доказательства этого следствия достаточно заметить, правильная призма является прямой призмой. Основаниями правильной призмы являются правильные многоугольники, а в любой правильный n – угольник можно вписать окружность.

Видео:Геометрия Найдите площадь боковой поверхности правильной треугольной призмы, описанной околоСкачать

Геометрия Найдите площадь боковой поверхности правильной треугольной призмы, описанной около

Отношение объемов цилиндра и описанной около него правильной n — угольной призмы

Задача. Найти отношение объемов цилиндра и описанной около него правильной n — угольной призмы.

Решение. Поскольку и объем цилиндра, и объем призмы объем призмы вычисляются по формуле

а высота цилиндра равна высоте описанной около него призмы, то для объемов цилиндра и описанной около него правильной n — угольной призмы справедливо равенство

Следствие 4. Отношение объема цилиндра к объему описанной около него правильной треугольной призмы правильной треугольной призмы равно

Следствие 5. Отношение объема цилиндра к объему описанной около него правильной четырехугольной призмы правильной четырехугольной призмы равно

Следствие 6. Отношение объема цилиндра к объему описанной около него правильной шестиугольной призмы равно

Видео:ЕГЭ 2022 математика задача 4 вариант 2Скачать

ЕГЭ 2022 математика задача 4 вариант 2

Призмы, вписанные в цилиндры

Видео:Призма и цилиндр. Практическая часть. 11 класс.Скачать

Призма и цилиндр. Практическая часть. 11 класс.

Призмы, вписанные в цилиндр. Свойства призмы, вписанной в цилиндр

Определение 1. Призмой, вписанной в цилиндр, называют такую призму, основания которой вписаны в окружности оснований цилиндра, а боковые ребра призмы являются образующими цилиндра (рис. 1).

Определение 2. Если призма вписана в цилиндр, то цилиндр называют описанным около призмы.

Как найти сторону призмы описанной около цилиндра

Прежде, чем перейти к вопросу о том, какую призму можно вписать в цилиндр, докажем следующее свойство призм.

Утверждение 1. Если около оснований призмы можно описать окружности, то отрезок, соединяющий центры описанных окружностей, будет параллелелен и равен боковому ребру призмы.

Докажем, что точка O’ является центром окружности радиуса r, описанной около верхнего основания призмы. С этой целью рассмотрим, например, четырехугольник A1A’1O’O (рис. 2).

Как найти сторону призмы описанной около цилиндра

Как найти сторону призмы описанной около цилиндра

Рассуждая аналогичным образом, заключаем, что

то есть точка O’ – центр окружности радиуса r , описанной около верхнего основания призмы.

В силу того, что четырехугольник OO’A1A’1 является параллелограммом, получаем равенство

Теорема. Около призмы можно описать цилиндр тогда и только тогда, когда выполнены следующие два условия:

  1. Призма является прямой призмой;
  2. Около оснований призмы можно описать окружности.

Доказательство. Докажем сначала, что если около n – угольной призмы описан цилиндр, то оба условия теоремы выполнены.

Действительно, выполнение условия 2 следует непосредственно из определения цилиндра, описанного около призмы. Из этого определения также следует, что вписанная в цилиндр призма является прямой призмой, поскольку образующие цилиндра перпендикулярны к плоскостям его оснований,

Таким образом, мы доказали, что, если призма вписана в цилиндр, то оба условия теоремы выполнены.

Теперь рассмотрим прямую n – угольную призму высоты h, около оснований которой можно описать окружности, и докажем, что около такой призмы можно описать цилиндр.

Обозначим буквой O центр окружности радиуса r, описанной около нижнего основания призмы, а символом O’ обозначим центр окружности, описанной около верхнего основания призмы.

Читайте также: Задний тормозной цилиндр тойота раум

Как найти сторону призмы описанной около цилиндра

Как найти сторону призмы описанной около цилиндра

Поскольку многоугольники, лежащие в основаниях призмы равны, то и радиусы описанных около них окружностей будут равны. Согласно утверждению 1 отрезок OO’ параллелен и равен боковому ребру призмы. Так как рассматриваемая призма прямая, то ее боковые ребра перпендикулярны плоскости основания и равны высоте призмы h. Значит, и отрезок OO’ перпендикулярен плоскости основания призмы и равен h.

Цилиндр с осью OO’ , радиусом r и высотой h и будет описан около исходной призмы.

Доказательство теоремы завершено.

Следствие 1. Высота призмы, вписанной в цилиндр, равна высоте цилиндра.

Следствие 2. Около любой прямой треугольной призмы можно описать цилиндр (рис. 4).

Как найти сторону призмы описанной около цилиндра

Как найти сторону призмы описанной около цилиндра

Следствие 3. Около любого прямоугольного параллелепипеда (в частности, около куба прямоугольного параллелепипеда (в частности, около куба ) можно описать цилиндр (рис. 5).

Как найти сторону призмы описанной около цилиндра

Замечание 1. Если у прямоугольного параллелепипеда прямоугольного параллелепипеда три ребра, выходящие из одной вершины, равны a, b, c и различны, то существует три возможности описать около этого параллелепипеда цилиндр в зависимости от того, какое из ребер параллелепипеда выбрано в качестве образующей описанного цилиндра (рис. 6, 7, 8).

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Как найти сторону призмы описанной около цилиндра

Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы.

Высота призмы равна высоте цилиндра, а сторона ее основания равна диаметру цилиндра. Боковые грани призмы — прямоугольники со сторонами 1 и 2. Поэтому площадь боковой поверхности 4 · 1 · 2 = 8.

Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 16. Найдите площадь боковой поверхности призмы.

Это задание ещё не решено, приводим решение прототипа.

Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы.

Высота призмы равна высоте цилиндра, а сторона ее основания равна диаметру цилиндра. Боковые грани призмы — прямоугольники со сторонами 1 и 2. Поэтому площадь боковой поверхности 4 · 1 · 2 = 8.

Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы.

Это задание ещё не решено, приводим решение прототипа.

Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы.

Высота призмы равна высоте цилиндра, а сторона ее основания равна диаметру цилиндра. Боковые грани призмы — прямоугольники со сторонами 1 и 2. Поэтому площадь боковой поверхности 4 · 1 · 2 = 8.

Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 7. Найдите площадь боковой поверхности призмы.

Это задание ещё не решено, приводим решение прототипа.

Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы.

Высота призмы равна высоте цилиндра, а сторона ее основания равна диаметру цилиндра. Боковые грани призмы — прямоугольники со сторонами 1 и 2. Поэтому площадь боковой поверхности 4 · 1 · 2 = 8.

Читайте также: Цилиндр тормозной передний левый 469 3501041

Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 5,5. Найдите площадь боковой поверхности призмы.

Это задание ещё не решено, приводим решение прототипа.

Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы.

Высота призмы равна высоте цилиндра, а сторона ее основания равна диаметру цилиндра. Боковые грани призмы — прямоугольники со сторонами 1 и 2. Поэтому площадь боковой поверхности 4 · 1 · 2 = 8.

Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 9. Найдите площадь боковой поверхности призмы.

Это задание ещё не решено, приводим решение прототипа.

Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы.

Высота призмы равна высоте цилиндра, а сторона ее основания равна диаметру цилиндра. Боковые грани призмы — прямоугольники со сторонами 1 и 2. Поэтому площадь боковой поверхности 4 · 1 · 2 = 8.

Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 17. Найдите площадь боковой поверхности призмы.

Это задание ещё не решено, приводим решение прототипа.

Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы.

Высота призмы равна высоте цилиндра, а сторона ее основания равна диаметру цилиндра. Боковые грани призмы — прямоугольники со сторонами 1 и 2. Поэтому площадь боковой поверхности 4 · 1 · 2 = 8.

Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 14. Найдите площадь боковой поверхности призмы.

Это задание ещё не решено, приводим решение прототипа.

Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы.

Высота призмы равна высоте цилиндра, а сторона ее основания равна диаметру цилиндра. Боковые грани призмы — прямоугольники со сторонами 1 и 2. Поэтому площадь боковой поверхности 4 · 1 · 2 = 8.

Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 4. Найдите площадь боковой поверхности призмы.

Это задание ещё не решено, приводим решение прототипа.

Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы.

Высота призмы равна высоте цилиндра, а сторона ее основания равна диаметру цилиндра. Боковые грани призмы — прямоугольники со сторонами 1 и 2. Поэтому площадь боковой поверхности 4 · 1 · 2 = 8.

Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 23,5. Найдите площадь боковой поверхности призмы.

Это задание ещё не решено, приводим решение прототипа.

Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы.

Высота призмы равна высоте цилиндра, а сторона ее основания равна диаметру цилиндра. Боковые грани призмы — прямоугольники со сторонами 1 и 2. Поэтому площадь боковой поверхности 4 · 1 · 2 = 8.

🎬 Видео

ЕГЭ математика СТЕРЕОМЕТРИЯ 8#5.18🔴Скачать

ЕГЭ математика СТЕРЕОМЕТРИЯ 8#5.18🔴

Призма и пирамида. Площадь и объем. Вебинар | Математика 10 классСкачать

Призма и пирамида. Площадь и объем.  Вебинар | Математика 10 класс

Параллелепипед описан около цилиндраСкачать

Параллелепипед описан около цилиндра

Сфера и шар. Сечение сферы. Вписанная и описанная сфераСкачать

Сфера и шар. Сечение сферы. Вписанная и описанная сфера

Периметр прямоуг. трапеции, описанной около окружн., равен 100, ее большая боковая сторона равна 37.Скачать

Периметр прямоуг. трапеции, описанной около окружн., равен 100, ее большая боковая сторона равна 37.

Задачи на нахождения объема призмы и цилиндраСкачать

Задачи на нахождения объема призмы и цилиндра

ЕГЭ. Задача 8. Призма и цилиндрСкачать

ЕГЭ. Задача 8. Призма и цилиндр

найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Стереометрия. ЕГЭ. Площадь боковой поверхности правильной треугольной призмыСкачать

Стереометрия. ЕГЭ. Площадь боковой поверхности правильной треугольной призмы

Геометрия 11 класс (Урок№12 - Объемы прямой призмы и цилиндра.)Скачать

Геометрия 11 класс (Урок№12 - Объемы прямой призмы и цилиндра.)

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

Геометрия Цилиндр описан около шара. Найдите объем шара, если известно, что объем цилиндра равен 60.Скачать

Геометрия Цилиндр описан около шара. Найдите объем шара, если известно, что объем цилиндра равен 60.

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Стереометрия. ЕГЭ. Площадь боковой поверхности правильной шестиугольной призмыСкачать

Стереометрия. ЕГЭ. Площадь боковой поверхности правильной шестиугольной призмы

Площадь полной поверхности призмыСкачать

Площадь полной поверхности призмы
Поделиться или сохранить к себе:
Технарь знаток