Как найти высоту цилиндра зная диаметр его основания

Как найти высоту цилиндра зная диаметр его основания

Авто помощник

Для любых фигур существует такой термин, как высота. Высотой обычно называется измеряемая величина какой -либо фигуры в вертикальном положении. У цилиндра высота -это линия, перпендикулярная двум его параллельным основаниям. Также у него есть образующая. Образующая цилиндра -это линия, вращением которой получается цилиндр. Она, в отличие от образующей других фигур, например конуса, совпадает с высотой.

Рассмотрим формулу, с помощью которой можно найти высоту:

V=πR^2*H, где R — радиус основания цилиндра, H — искомая высота.

Если вместо радиуса дан диаметр, данная формула видоизменяется следующим образом:

Соответственно, высота цилиндра равна:

Также высоту можно определить, исходя из диаметра и площади цилиндра. Существует площадь боковой и площадь полной поверхности цилиндра. Часть поверхности цилиндра, ограниченная цилиндрической поверхностью, называют боковой поверхностью цилиндра. Площадь полной поверхности цилиндра включает в себя и площадь его оснований.

Площадь боковой поверхности цилиндра вычисляется по следующей формуле:

Преобразовав данное выражение, найдите высоту:

Если дана площадь полной поверхности цилиндра, вычисляйте высоту несколько иным способом. Площадь полной поверхности цилиндра равна:

Вначале преобразуйте данную формулу как показано ниже:

Через цилиндр можно провести прямоугольное сечение. Ширина этого сечения будет совпадать с диаметрами оснований, а длина — с образующими фигуры, которые равны высоте. Если провести через это сечение диагональ, то можно легко заметить, что образуется прямоугольный треугольник. В данном случае диагональ является гипотенузой треугольника, катет -диаметром, а второй катет- высотой и образующей цилиндра. Тогда высоту можно найти по теореме Пифагора:

Видео:Задача на вычисление высоты цилиндраСкачать

Задача на вычисление высоты цилиндра

Диаметр и высота цилиндра

Как найти высоту цилиндра зная диаметр его основания

Видео:Цилиндр - расчёт площади, объёма.Скачать

Цилиндр - расчёт площади, объёма.

Свойства

Через диаметр цилиндра можно рассчитать его радиус и периметр основания цилиндра. Радиус будет равен половине диаметра, а периметр – его произведению на число π. r=D/2 P=πD

Зная диаметр и высоту цилиндра, можно узнать площадь, объем, диагональ цилиндра и остальные параметры. Площадь боковой поверхности цилиндра представляет собой площадь прямоугольника, сторонами которого являются периметр основания цилиндра и его высота. Чтобы затем найти площадь полной поверхности цилиндра через диаметр и высоту, нужно к площади боковой поверхности добавить площадь верхнего и нижнего оснований, каждое из которых равно произведению числа π на четверть квадрата диаметра. S_(б.п.)=hP=πDh S_(п.п.)=S_(б.п.)+2S_(осн.)=πDh+(πD^2)/2=πD/2(2h+D) P=πD

Объем цилиндра представляет собой площадь его основания, умноженную на высоту. Чтобы найти объем цилиндра через диаметр и высоту, нужно умножить квадрат диаметра на четверть числа π и на высоту. V=(πD^2 h)/4 P=πD

Диагональ цилиндра находится из прямоугольного треугольника, в котором она является гипотенузой, а катеты представлены высотой и диаметром цилиндра. По теореме Пифагора диагональ цилиндра через высоту и диаметр цилиндра равна квадратному корню из суммы их квадратов. (рис. 25.1) d=√(h^2+D^2 ) P=πD

Читайте также: Цилиндр чезет 250 кросс

Чтобы найти радиус сферы вписанной в цилиндр, если его диаметр равен высоте, нужно разделить диаметр цилиндра либо высоту на два, так как радиус вписанной сферы равен радиусу цилиндра. (рис.25.2) r_1=h/2=D/2 P=πD

Радиус сферы, описанной вокруг цилиндра, при соблюдении тех же условий (равенство диаметра цилиндра и его высоты) равен половине диагонали цилиндра.(рис.25.3) R=d/2=√(h^2+D^2 )/2

Видео:№537. Диаметр основания цилиндра равен 1 м, высота цилиндра равна длинеСкачать

№537. Диаметр основания цилиндра равен 1 м, высота цилиндра равна длине

Как найти высоту цилиндра, с помощью данных?

Видео:№530. Высота цилиндра равна 12 см, а радиус основания равен 10 см. Цилиндр пересеченСкачать

№530. Высота цилиндра равна 12 см, а радиус основания равен 10 см. Цилиндр пересечен

Объем цилиндра формула (через радиус основания и высоту)

r — радиус основания цилиндра,

Если внимательно посмотреть на эту формулу, то можно заметить, что

— это формула площади круга, а в нашем случае — площадь основания. Поэтому формулу объема цилиндра можно записать через площадь основания и высоту:

Видео:№531. Высота цилиндра равна 10 дм. Площадь сечения цилиндра плоскостью, параллельнойСкачать

№531. Высота цилиндра равна 10 дм. Площадь сечения цилиндра плоскостью, параллельной

S (б.п.) = hP = 2πrh

— Если известна площадь бок. поверхности S (б.п.) и высота h цилиндра, радиус будет равен частному от деления S (б.п.) на произведение 2пи на высоту:

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Формула вычисления объема цилиндра

1. Через площадь основания и высоту

Объем (V) цилиндра равняется произведению его высоты и площади основания.

Как найти высоту цилиндра зная диаметр его основания

2. Через радиус основания и высоту

Как мы знаем, в качестве оснований цилиндра (равны между собой) выступает круг, площадь которого вычисляется так: S = π ⋅ R 2 . Следовательно, формулу для вычисления объема цилиндра можно представить в виде:

V = π ⋅ R 2 ⋅ H

Примечание: в расчетах значение числа π округляется до 3,14.

3. Через диаметр основания и высоту

Как нам известно, диаметр круга равняется двум его радиусам: d = 2R. А значит, вычислить объем цилиндра можно следующим образом:

V = π ⋅ (d/2) 2 ⋅ H

Нет сомнений, что все мы со школьных лет помним, как найти высоту цилиндра, формула выглядит так: H=V/πR^2 или 4V/D^2.

Расшифровать формулу просто:

  • V – объем цилиндра;
  • π – 3,14;
  • R – радиус цилиндра;
  • D – диаметр.

То есть получается, что, если разделить объем на площадь основания, получится высота цилиндра.

Можно поступить проще. Для этого нам придется вычислить площадь боковой поверхности искомого цилиндра. Это легко сделать по формуле: S=2πRH. Слегка изменив формулу, получаем: H=S/2πR.

Таким образом, есть уже два способа, которые помогли вспомнить, как найти высоту цилиндра. Это нетрудно, когда перед глазами стройные формулы.

Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Способ расчета радиуса цилиндра:

Как найти высоту цилиндра зная диаметр его основания

Цилиндр – геометрическое тело, которое получается при вращении прямоугольника вокруг его стороны. Также, цилиндр представляет собой тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Эта поверхность образуется при движении прямой параллельно самой себе. При этом выделенная точка прямой перемещается вдоль определенной плоской кривой (направляющая). Данная прямая называется образующей цилиндрической поверхности.
Формула радиуса цилиндра:
где V – объем цилиндра, h – высота

Как найти высоту цилиндра зная диаметр его основания

Цилиндр – геометрическое тело, которое получается при вращении прямоугольника вокруг его стороны. Также, цилиндр представляет собой тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Эта поверхность образуется при движении прямой параллельно самой себе. При этом выделенная точка прямой перемещается вдоль определенной плоской кривой (направляющая). Данная прямая называется образующей цилиндрической поверхности.
Формула радиуса цилиндра:
где Sb – площадь боковой поверхности, h – высота

Читайте также: Как определить порядок работы цилиндров двигателя

Как найти высоту цилиндра зная диаметр его основания

Цилиндр – геометрическое тело, которое получается при вращении прямоугольника вокруг его стороны. Также, цилиндр представляет собой тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Эта поверхность образуется при движении прямой параллельно самой себе. При этом выделенная точка прямой перемещается вдоль определенной плоской кривой (направляющая). Данная прямая называется образующей цилиндрической поверхности.
Формула радиуса цилиндра:
где S – площадь полной поверхности, h – высота

S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr2=πr (2h+r)

Площадь боковой поверхности равняется длине окружности основания умноженной на высоту:

R = √V / πh

где V — объем цилиндра, h — высота.
Полная площадь поверхности цилиндра складывается из сумм площадей его боковой поверхности и двух оснований:

Видео:Геометрия Задача про монаха Найти диаметр цилиндраСкачать

Геометрия Задача про монаха Найти диаметр цилиндра

Примеры задач

Задание 1
Высота цилиндра равняется 5 см, а объем – 141,3 см 3 . Вычислите его радиус.

Как найти высоту цилиндра зная диаметр его основания

Решение:
Воспользуемся соответствующей формулой, подставив в нее известные по условиям задачи значения:

Задание 2
Найдите радиус цилиндра, если площадь его боковой поверхности равна 175,84 см 2 , а высота составляет 7 см.

Как найти высоту цилиндра зная диаметр его основания

Решение:
Применим формулу, в которой задействованы заданные величины:

Задание 3
Рассчитайте радиус цилиндра, если полная площадь его поверхности – 602,88 см 2 , а высота – 10 см.

Как найти высоту цилиндра зная диаметр его основания

Решение:
Используем третью формулу для нахождения неизвестной величины:

Видео:№529. Высота цилиндра равна 8 см, радиус равен 5 см. Найдите площадь сечения цилиндраСкачать

№529. Высота цилиндра равна 8 см, радиус равен 5 см. Найдите площадь сечения цилиндра

Через площадь боковой поверхности

Радиус цилиндра считается таким образом:

Как найти высоту цилиндра зная диаметр его основания

Sбок. – площадь боковой поверхности цилиндра; равна произведению длины окружности (2 π R), являющейся основанием фигуры, на его высоту:

Видео:11 класс, 15 урок, Площадь поверхности цилиндраСкачать

11 класс, 15 урок, Площадь поверхности цилиндра

Площадь полной поверхности цилиндра через радиус основания и высоту

Как найти высоту цилиндра зная диаметр его основания

Формула для нахождения полной поверхности цилиндра через высоту и радиус основания:

, где π — число Пи (3,14159…), r — радиус основания цилиндра, h — высота цилиндра.

Видео:Объём цилиндраСкачать

Объём цилиндра

Радиус и высота цилиндра

Как найти высоту цилиндра зная диаметр его основания

Видео:№523. Осевое сечение цилиндра — квадрат, диагональ которого равна 20 см. Найдите: а) высотуСкачать

№523. Осевое сечение цилиндра — квадрат, диагональ которого равна 20 см. Найдите: а) высоту

Свойства

Зная радиус цилиндра r, можно сразу найти его диаметр D и периметр окружности P, лежащей в его основании. Диаметр цилиндра является величиной в два раза большей радиуса по значению, а периметр окружности равен произведению диаметра на число π. D=2r P=2πr

Зная радиус и высоту цилиндра можно вычислить все необходимые параметры, такие как, например, площадь поверхности цилиндра или его объем, диагональ цилиндра и так далее. Площадь поверхности цилиндра может быть полной или только боковой, разница заключается в том, что для полной поверхности необходимо прибавить к боковой еще два основания. S_(б.п.)=hP=2πrh S_(п.п.)=S_(б.п.)+2S_(осн.)=2πrh+πr^2=πr(2h+r)

Объем цилиндра равен произведению его площади основания на высоту, то есть произведению числа π на высоту и квадрат радиуса. V=πr^2 h

Чтобы найти диагональ цилиндра, необходимо провести диаметр в основании таким образом, чтобы он соединял диагональ с высотой цилиндра, расположенной на его боковой поверхности. Тогда из образованного прямоугольного треугольника, можно вычислить диагональ цилиндра через радиус и высоту цилиндра по теореме Пифагора. (рис.25.1) d=√(D^2+h^2 )=√(4r^2+h^2 )

Читайте также: 15734 30000 заглушка блока цилиндров размер

В цилиндр можно вписать сферу только тогда, когда диаметр его основания равен его высоте. То же самое касается и сферы описанной вокруг цилиндра. Радиус вписанной в цилиндр сферы равен радиусу окружности, лежащей в основании сферы, или половине высоты, а радиус сферы описанной около цилиндра равен половине его диагонали. (рис.25.2, 25.3) r_1=r=h/2 R=d/2=√(4r^2+h^2 )/2

Видео:Цилиндр и конус имеют общее основание и высоту. Высота цилиндра равна радиусу основания... (ЕГЭ)Скачать

Цилиндр и конус имеют общее основание и высоту. Высота цилиндра равна радиусу основания... (ЕГЭ)

Высота и диагональ цилиндра

Как найти высоту цилиндра зная диаметр его основания

Видео:9 класс, 41 урок, ЦилиндрСкачать

9 класс, 41 урок, Цилиндр

Свойства

Зная высоту и диагональ цилиндра, найти диаметр окружности в его основании не составляет труда. Для этого необходимо провести диагональ таким образом, чтобы получить с вышеуказанными параметрами прямоугольный треугольник, и далее вычислить неизвестное звено по теореме Пифагора. (рис.25.1) D=√(d^2-h^2 )

Зная диаметр, можно подставив полученное выражение вместо него в следующие формулы, найти радиус и периметр окружности в основании через диагональ и высоту цилиндра. r=D/2=√(d^2-h^2 )/2 P=πD=π√(d^2-h^2 )

Площадь боковой и полной поверхности вычисляются с непосредственным участием радиуса цилиндра или соответствующего ему выражения. Поэтому чтобы найти площади цилиндра через высоту и диагональ, нужно совершить следующие преобразования. S_(б.п.)=hP=2πrh=2π √(d^2-h^2 )/2 h=πh√(d^2-h^2 ) S_(п.п.)=S_(б.п.)+2S_(осн.)=πh√(d^2-h^2 )+π(d^2-h^2 )

Объем цилиндра вычисляется как произведение площади его основания на высоту. Чтобы найти объем цилиндра через высоту и диагональ цилиндра, нужно вместо площади основания подставить произведение числа π на разность квадратов диагонали и высоты. V=πh(d^2-h^2 )

Преследуя цель вычислить радиус вписанной или описанной окружности цилиндра через диагональ и высоту, необходимо помнить о том, что в цилиндр можно вписать окружность, только если радиус цилиндра равен его высоте. Поэтому радиус вписанной окружности будет равен половине высоты, а радиус описанной окружности – половине диагонали. (рис. 25.2,25.3) r_1=h/2 R=d/2

Видео:№525. Площадь осевого сечения цилиндра равна 10 м2, а площадь основания — 5 м2.Скачать

№525. Площадь осевого сечения цилиндра равна 10 м2, а площадь основания — 5 м2.

Высота и площадь основания цилиндра

Как найти высоту цилиндра зная диаметр его основания

Видео:ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРАСкачать

ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРА

Свойства

Через площадь основания цилиндра можно найти диаметр цилиндра и радиус. Поскольку площадь окружности, которая представляет собой основание цилиндра, равна произведению квадрата радиуса или четверти квадрата диаметра на число π, то эти два параметра легко найти, составив отношение из нужного количества площадей к числу π, и извлечь затем из него квадратный корень. r=√(S/π) D=√(4S/π)=2√(S/π)

Также зная площадь основания цилиндра и высоту, можно сразу найти объем цилиндра, перемножив эти два показателя. V=S_(осн.) h

Периметр окружности, лежащей в основании цилиндра, через площадь основания равен двум квадратным корням из произведения площади основания на число π. P=2√Sπ

Площадь боковой поверхности цилиндра, зная высоту и площадь основания, можно найти, выразив радиус через площадь основания и умножив его на удвоенное число π и высоту, а площадь полной поверхности будет представлена как сумма этого значения и двух заданных площадей основания. S_(б.п.)=2h√Sπ S_(п.п.)=S_(б.п.)+2S_(осн.)=2h√Sπ++2S_(осн.)

Чтобы найти диагональ цилиндра через площадь основания и высоту, также понадобится извлечь из площади основания радиус, и затем подставив его в теорему Пифагора, найти диагональ, как гипотенузу полученного прямоугольного треугольника. (рис.25.1) d=√(D^2+h^2 )=√(4S/π+h^2 )

Радиусы вписанной и описанной вокруг цилиндра сфер равны радиусу цилиндра и половине диагонали соответственно. (рис. 25.2,25.3) r_1=r=√(S/π) R=d/2=√(4S/π+h^2 )/2

📺 Видео

#136. Задание 8: цилиндрСкачать

#136. Задание 8: цилиндр

11 класс. Геометрия. Объем цилиндраСкачать

11 класс. Геометрия. Объем цилиндра

РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДРСкачать

РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДР

Объем цилиндра.Скачать

Объем цилиндра.
Поделиться или сохранить к себе:
Технарь знаток