Через площадь основания цилиндра можно найти диаметр цилиндра и радиус. Поскольку площадь окружности, которая представляет собой основание цилиндра, равна произведению квадрата радиуса или четверти квадрата диаметра на число π, то эти два параметра легко найти, составив отношение из нужного количества площадей к числу π, и извлечь затем из него квадратный корень. r=√(S/π) D=√(4S/π)=2√(S/π)
Также зная площадь основания цилиндра и высоту, можно сразу найти объем цилиндра, перемножив эти два показателя. V=S_(осн.) h
Периметр окружности, лежащей в основании цилиндра, через площадь основания равен двум квадратным корням из произведения площади основания на число π. P=2√Sπ
Площадь боковой поверхности цилиндра, зная высоту и площадь основания, можно найти, выразив радиус через площадь основания и умножив его на удвоенное число π и высоту, а площадь полной поверхности будет представлена как сумма этого значения и двух заданных площадей основания. S_(б.п.)=2h√Sπ S_(п.п.)=S_(б.п.)+2S_(осн.)=2h√Sπ++2S_(осн.)
Чтобы найти диагональ цилиндра через площадь основания и высоту, также понадобится извлечь из площади основания радиус, и затем подставив его в теорему Пифагора, найти диагональ, как гипотенузу полученного прямоугольного треугольника. (рис.25.1) d=√(D^2+h^2 )=√(4S/π+h^2 )
Радиусы вписанной и описанной вокруг цилиндра сфер равны радиусу цилиндра и половине диагонали соответственно. (рис. 25.2,25.3) r_1=r=√(S/π) R=d/2=√(4S/π+h^2 )/2
- Как вычислить высоту цилиндра
- Как найти высоту цилиндра, с помощью данных?
- Объем цилиндра формула (через радиус основания и высоту)
- S (б.п.) = hP = 2πrh
- Формула вычисления объема цилиндра
- Способ расчета радиуса цилиндра:
- S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr2=πr (2h+r)
- R = √V / πh
- Примеры задач
- Через площадь боковой поверхности
- Площадь полной поверхности цилиндра через радиус основания и высоту
- Калькулятор для цилиндра
- Калькулятор для цилиндра: комментарий
- Прямой круговой цилиндр
- Формулы для прямого кругового цилиндра:
- Скошенный цилиндр
- Диаметр и высота цилиндра
- Свойства
- 📹 Видео
Видео:№525. Площадь осевого сечения цилиндра равна 10 м2, а площадь основания — 5 м2.Скачать
Как вычислить высоту цилиндра
Для любых фигур существует такой термин, как высота. Высотой обычно называется измеряемая величина какой -либо фигуры в вертикальном положении. У цилиндра высота -это линия, перпендикулярная двум его параллельным основаниям. Также у него есть образующая. Образующая цилиндра -это линия, вращением которой получается цилиндр. Она, в отличие от образующей других фигур, например конуса, совпадает с высотой.
Рассмотрим формулу, с помощью которой можно найти высоту:
V=πR^2*H, где R — радиус основания цилиндра, H — искомая высота.
Если вместо радиуса дан диаметр, данная формула видоизменяется следующим образом:
Соответственно, высота цилиндра равна:
Также высоту можно определить, исходя из диаметра и площади цилиндра. Существует площадь боковой и площадь полной поверхности цилиндра. Часть поверхности цилиндра, ограниченная цилиндрической поверхностью, называют боковой поверхностью цилиндра. Площадь полной поверхности цилиндра включает в себя и площадь его оснований.
Читайте также: Ружье со сверловкой цилиндр
Площадь боковой поверхности цилиндра вычисляется по следующей формуле:
Преобразовав данное выражение, найдите высоту:
Если дана площадь полной поверхности цилиндра, вычисляйте высоту несколько иным способом. Площадь полной поверхности цилиндра равна:
Вначале преобразуйте данную формулу как показано ниже:
Через цилиндр можно провести прямоугольное сечение. Ширина этого сечения будет совпадать с диаметрами оснований, а длина — с образующими фигуры, которые равны высоте. Если провести через это сечение диагональ, то можно легко заметить, что образуется прямоугольный треугольник. В данном случае диагональ является гипотенузой треугольника, катет -диаметром, а второй катет- высотой и образующей цилиндра. Тогда высоту можно найти по теореме Пифагора:
Видео:Цилиндр - расчёт площади, объёма.Скачать
Как найти высоту цилиндра, с помощью данных?
Видео:Задача на вычисление высоты цилиндраСкачать
Объем цилиндра формула (через радиус основания и высоту)
r — радиус основания цилиндра,
Если внимательно посмотреть на эту формулу, то можно заметить, что
— это формула площади круга, а в нашем случае — площадь основания. Поэтому формулу объема цилиндра можно записать через площадь основания и высоту:
Видео:№531. Высота цилиндра равна 10 дм. Площадь сечения цилиндра плоскостью, параллельнойСкачать
S (б.п.) = hP = 2πrh
— Если известна площадь бок. поверхности S (б.п.) и высота h цилиндра, радиус будет равен частному от деления S (б.п.) на произведение 2пи на высоту:
Видео:№537. Диаметр основания цилиндра равен 1 м, высота цилиндра равна длинеСкачать
Формула вычисления объема цилиндра
1. Через площадь основания и высоту
Объем (V) цилиндра равняется произведению его высоты и площади основания.
2. Через радиус основания и высоту
Как мы знаем, в качестве оснований цилиндра (равны между собой) выступает круг, площадь которого вычисляется так: S = π ⋅ R 2 . Следовательно, формулу для вычисления объема цилиндра можно представить в виде:
V = π ⋅ R 2 ⋅ H
Примечание: в расчетах значение числа π округляется до 3,14.
3. Через диаметр основания и высоту
Как нам известно, диаметр круга равняется двум его радиусам: d = 2R. А значит, вычислить объем цилиндра можно следующим образом:
V = π ⋅ (d/2) 2 ⋅ H
Нет сомнений, что все мы со школьных лет помним, как найти высоту цилиндра, формула выглядит так: H=V/πR^2 или 4V/D^2.
Расшифровать формулу просто:
- V – объем цилиндра;
- π – 3,14;
- R – радиус цилиндра;
- D – диаметр.
То есть получается, что, если разделить объем на площадь основания, получится высота цилиндра.
Можно поступить проще. Для этого нам придется вычислить площадь боковой поверхности искомого цилиндра. Это легко сделать по формуле: S=2πRH. Слегка изменив формулу, получаем: H=S/2πR.
Таким образом, есть уже два способа, которые помогли вспомнить, как найти высоту цилиндра. Это нетрудно, когда перед глазами стройные формулы.
Видео:№523. Осевое сечение цилиндра — квадрат, диагональ которого равна 20 см. Найдите: а) высотуСкачать
Способ расчета радиуса цилиндра:
Цилиндр – геометрическое тело, которое получается при вращении прямоугольника вокруг его стороны. Также, цилиндр представляет собой тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Эта поверхность образуется при движении прямой параллельно самой себе. При этом выделенная точка прямой перемещается вдоль определенной плоской кривой (направляющая). Данная прямая называется образующей цилиндрической поверхности.
Формула радиуса цилиндра:
где V – объем цилиндра, h – высота
Читайте также: Что такое типоразмер цилиндра личинки замка
Цилиндр – геометрическое тело, которое получается при вращении прямоугольника вокруг его стороны. Также, цилиндр представляет собой тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Эта поверхность образуется при движении прямой параллельно самой себе. При этом выделенная точка прямой перемещается вдоль определенной плоской кривой (направляющая). Данная прямая называется образующей цилиндрической поверхности.
Формула радиуса цилиндра:
где Sb – площадь боковой поверхности, h – высота
Цилиндр – геометрическое тело, которое получается при вращении прямоугольника вокруг его стороны. Также, цилиндр представляет собой тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Эта поверхность образуется при движении прямой параллельно самой себе. При этом выделенная точка прямой перемещается вдоль определенной плоской кривой (направляющая). Данная прямая называется образующей цилиндрической поверхности.
Формула радиуса цилиндра:
где S – площадь полной поверхности, h – высота
S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr2=πr (2h+r)
Площадь боковой поверхности равняется длине окружности основания умноженной на высоту:
R = √V / πh
где V — объем цилиндра, h — высота.
Полная площадь поверхности цилиндра складывается из сумм площадей его боковой поверхности и двух оснований:
Видео:11 класс, 15 урок, Площадь поверхности цилиндраСкачать
Примеры задач
Задание 1
Высота цилиндра равняется 5 см, а объем – 141,3 см 3 . Вычислите его радиус.
Решение:
Воспользуемся соответствующей формулой, подставив в нее известные по условиям задачи значения:
Задание 2
Найдите радиус цилиндра, если площадь его боковой поверхности равна 175,84 см 2 , а высота составляет 7 см.
Решение:
Применим формулу, в которой задействованы заданные величины:
Задание 3
Рассчитайте радиус цилиндра, если полная площадь его поверхности – 602,88 см 2 , а высота – 10 см.
Решение:
Используем третью формулу для нахождения неизвестной величины:
Видео:№530. Высота цилиндра равна 12 см, а радиус основания равен 10 см. Цилиндр пересеченСкачать
Через площадь боковой поверхности
Радиус цилиндра считается таким образом:
Sбок. – площадь боковой поверхности цилиндра; равна произведению длины окружности (2 π R), являющейся основанием фигуры, на его высоту:
Видео:ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРАСкачать
Площадь полной поверхности цилиндра через радиус основания и высоту
Формула для нахождения полной поверхности цилиндра через высоту и радиус основания:
, где π — число Пи (3,14159…), r — радиус основания цилиндра, h — высота цилиндра.
Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать
Калькулятор для цилиндра
Онлайн калькулятор для цилиндра позволяет по известным данным вычислить:
- объем цилиндра,
- площадь основания, площадь боковой поверхности и площадь полной поверхности цилиндра,
- элементы: радиус, диаметр и высоту.
Калькулятор для цилиндра: комментарий
Цилиндр — геометрическое тело, ограниченное цилиндрической поверхностью (называемой боковой поверхностью цилиндра) и не более чем двумя поверхностями (основаниями цилиндра).
Обозначения для цилиндра:
R – радиус, D – диаметр,
V – объем,
Sо – площадь основания, Sб – площадь боковой поверхности, S – площадь полной поверхности,
h – высота прямого кругового цилиндра (h1 и h2 — минимальная и максимальная высота)
π – число Пи которое всегда примерно равно 3,14.
Читайте также: Цилиндр сделанный из алюминия
Прямой круговой цилиндр
Круговым называется цилиндр, если его направляющая является окружностью. Прямым называется цилиндр, если его образующая перпендикулярна основаниям.
Формулы для прямого кругового цилиндра:
Найти объем цилиндра , если известны:
- радиус и высота цилиндра: V=πR 2 h
- диаметр и высота цилиндра: V=πD 2 /4h
- площадь и высота цилиндра: V=Sоh
Площадь(Sб) боковой поверхности прямого кругового цилиндра
Так как боковая поверхность представляет собой прямоугольник, то площадь боковой поверхности цилиндра определяется по формуле: Sб=2πR⋅h
Площадь(Sо) основания цилиндра
Основание цилиндра —круг, поэтому площадь одного основания находится по формуле площади круга: Sо=πR 2 .
Площадь(S) полной поверхности прямого кругового цилиндра
Площадь полной поверхности цилиндра определяется по формуле: S=2πRh+2πR 2 =2πR(h+R)
Формулы нахождения радиуса и диаметра по:
- высоте и объему: R=√(V/πh) , D=2*√(V/πh)
- площади боковой поверхности и высоте: R=Sб/2πh , D=2*Sб/2πh
- площади основания и высоте: R=√(Sо/π) , R=2*√(Sо/π)
Формулы нахождения высоты по:
- радиусу и объему: h=V/πR 2
- площади боковой поверхности и радиусу: h=Sб/2πR
- площади полной поверхности и радиусу: h=S/2πR-R
Скошенный цилиндр
Прямой круговой цилиндр со скошенным основанием (скошенный цилиндр) определяется радиусом основания R, минимальной высотой h1 и максимальной высотой h2.
Видео:Видеоурок по математике "Цилиндр"Скачать
Диаметр и высота цилиндра
Видео:№529. Высота цилиндра равна 8 см, радиус равен 5 см. Найдите площадь сечения цилиндраСкачать
Свойства
Через диаметр цилиндра можно рассчитать его радиус и периметр основания цилиндра. Радиус будет равен половине диаметра, а периметр – его произведению на число π. r=D/2 P=πD
Зная диаметр и высоту цилиндра, можно узнать площадь, объем, диагональ цилиндра и остальные параметры. Площадь боковой поверхности цилиндра представляет собой площадь прямоугольника, сторонами которого являются периметр основания цилиндра и его высота. Чтобы затем найти площадь полной поверхности цилиндра через диаметр и высоту, нужно к площади боковой поверхности добавить площадь верхнего и нижнего оснований, каждое из которых равно произведению числа π на четверть квадрата диаметра. S_(б.п.)=hP=πDh S_(п.п.)=S_(б.п.)+2S_(осн.)=πDh+(πD^2)/2=πD/2(2h+D) P=πD
Объем цилиндра представляет собой площадь его основания, умноженную на высоту. Чтобы найти объем цилиндра через диаметр и высоту, нужно умножить квадрат диаметра на четверть числа π и на высоту. V=(πD^2 h)/4 P=πD
Диагональ цилиндра находится из прямоугольного треугольника, в котором она является гипотенузой, а катеты представлены высотой и диаметром цилиндра. По теореме Пифагора диагональ цилиндра через высоту и диаметр цилиндра равна квадратному корню из суммы их квадратов. (рис. 25.1) d=√(h^2+D^2 ) P=πD
Чтобы найти радиус сферы вписанной в цилиндр, если его диаметр равен высоте, нужно разделить диаметр цилиндра либо высоту на два, так как радиус вписанной сферы равен радиусу цилиндра. (рис.25.2) r_1=h/2=D/2 P=πD
Радиус сферы, описанной вокруг цилиндра, при соблюдении тех же условий (равенство диаметра цилиндра и его высоты) равен половине диагонали цилиндра.(рис.25.3) R=d/2=√(h^2+D^2 )/2
📹 Видео
Цилиндр и конус имеют общее основание и высоту. Высота цилиндра равна радиусу основания... (ЕГЭ)Скачать
#136. Задание 8: цилиндрСкачать
60. Площадь поверхности цилиндраСкачать
РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДРСкачать
Объём цилиндраСкачать
#130. Задание 8: комбинация телСкачать
Володя измеряет высоту цилиндраСкачать
№540. Высота цилиндра на 12 см больше его радиуса, а площадь полной поверхности равна 288π см2Скачать