Цили́ндр (греч. kýlindros , валик, каток) — геометрическое тело, ограниченное цилиндрической поверхностью (называемой боковой поверхностью цилиндра) и не более чем двумя поверхностями (основаниями цилиндра); причём если оснований два, то одно получено из другого параллельным переносом вдоль образующей боковой поверхности цилиндра; и основание пересекает каждую образующую боковой поверхности ровно один раз.
Бесконечное тело, ограниченное замкнутой бесконечной цилиндрической поверхностью, называется бесконечным цилиндром, ограниченное замкнутым цилиндрическим лучом и его основанием, называется открытым цилиндром. Основание и образующие цилиндрического луча называют соответственно основанием и образующими открытого цилиндра.
Конечное тело, ограниченное замкнутой конечной цилиндрической поверхностью и двумя выделившими её сечениями, называется конечным цилиндром, или собственно цилиндром. Сечения называются основаниями цилиндра. По определению конечной цилиндрической поверхности, основания цилиндра равны.
Очевидно, образующие боковой поверхности цилиндра — равные по длине (называемой высотой цилиндра) отрезки, лежащие на параллельных прямых, а концами лежащие на основаниях цилиндра. К математическим курьёзам относят определение любой конечной трёхмерной поверхности без самопересечений как цилиндра нулевой высоты (данную поверхность считают одновременно обоими основаниями конечного цилиндра). Основания цилиндра качественно влияют на цилиндр.
Если основания цилиндра плоские (и, следовательно, содержащие их плоскости параллельны), то цилиндр называют стоящим на плоскости. Если основания стоящего на плоскости цилиндра перпендикулярны образующей, то цилиндр называется прямым.
В частности, если основание стоящего на плоскости цилиндра — круг, то говорят о круговом (круглом) цилиндре; если эллипс — то эллиптическом.
Объём конечного цилиндра равен интегралу площади основания по образующей. В частности, объём прямого кругового цилиндра равен
,
(где — радиус основания, — высота).
Площадь боковой поверхности цилиндра считается по следующей формуле:
.
Площадь полной поверхности цилиндра складывается из площади боковой поверхности и площади оснований. Для прямого кругового цилиндра:
.
Wikimedia Foundation . 2010 .
ЭЛЛИПТИЧЕСКИЙ ЦИЛИНДР — цилиндрическая поверхность второго порядка, для к рой направляющей служит эллипс. Если эллипс действительный, то Э. ц. наз. действительным и его канонич. уравнение имеет вид если эллипс мнимый, то Э. ц. наз. мнимым и его канонич. уравнение имеет… … Математическая энциклопедия
Цилиндр (геометрия) — Правильный круглый цилиндр Эллиптический цилиндр Цилиндр (греч. kýlindros, валик, каток) геометрическое тело, ограниченное цилиндрической поверхностью (назыв … Википедия
Цилиндр (геометрическая фигура) — Правильный круглый цилиндр Эллиптический цилиндр Цилиндр (греч. kýlindros, валик, каток) геометрическое тело, ограниченное цилиндрической поверхностью (назыв … Википедия
Цилиндр (математика) — Правильный круглый цилиндр Эллиптический цилиндр Цилиндр (греч. kýlindros, валик, каток) геометрическое тело, ограниченное цилиндрической поверхностью (назыв … Википедия
Цилиндр — У этого термина существуют и другие значения, см. Цилиндр (значения). Прямой круговой цилиндр … Википедия
Читайте также: Геометрические фигуры цилиндр размеры
ЦИЛИНДРИЧЕСКАЯ ПОВЕРХНОСТЬ — цилиндр, поверхность, образуемая движением прямой (образующей), перемещающейся параллельно самой себе и пересекающей данную линию (направляющую). Направляющей цилиндрич. поверхности второго порядка служит линия второго порядки. В зависимости от… … Математическая энциклопедия
ПОВЕРХНОСТЬ ВТОРОГО ПОРЯДКА — множество точек 3 мерного действительного (или комплексноро) пространства, координаты к рых в декартовой системе удовлетворяют алгебраич. уравнению 2 й степени (*) Уравнение (*) может и не определять действительного геометрич. образа, в таких… … Математическая энциклопедия
Поверхность второго порядка — геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида в котором по крайней мере один из коэффициентов … Википедия
Цилиндрическое тело — Правильный круглый цилиндр Эллиптический цилиндр Цилиндр (греч. kýlindros, валик, каток) геометрическое тело, ограниченное цилиндрической поверхностью (назыв … Википедия
- Цилиндр. Виды, объём цилиндра, площадь поверхности
- Определение цилиндра как геометрической фигуры
- Виды цилиндров
- Что такое поверхность вращения
- Площадь поверхности цилиндра
- Определение объёма фигуры
- Как построить развёртку цилиндра
- Отличия скошенного цилиндра
- Геометрические характеристики скошенного цилиндра
- Геометрические тела. Цилиндр.
- Формулы нахождения элементов цилиндра.
- 🔥 Видео
Видео:ОБЪЯСНЕНИЕ МИРА, ОТКУДА ПРИШЕЛ ЦИЛИНДР ( The Eternal Cylinder )Скачать
Цилиндр. Виды, объём цилиндра, площадь поверхности
Название науки «геометрия» переводится как «измерение земли». Зародилась стараниями самых первых древних землеустроителей. А было так: во время разливов священного Нила потоки воды иногда смывали границы участков земледельцев, а новые границы могли не совпасть со старыми. Налоги же крестьянами уплачивались в казну фараона пропорционально величине земельного надела. Измерением площадей пашни в новых границах после разлива занимались специальные люди. Именно в результате их деятельности и возникла новая наука, получившая развитие в Древней Греции. Там она и название получила, и приобрела практически современный вид. В дальнейшем термин стал интернациональным названием науки о плоских и объёмных фигурах.
Планиметрия – раздел геометрии, занимающийся изучением плоских фигур. Другим разделом науки является стереометрия, которая рассматривает свойства пространственных (объёмных) фигур. К таким фигурам относится и описываемая в этой статье – цилиндр.
Примеров присутствия предметов цилиндрической формы в повседневной жизни предостаточно. Цилиндрическую (гораздо реже – коническую) форму имеют почти все детали вращения — валы, втулки, шейки, оси и т.д. Цилиндр широко используется и в строительстве: башни, опорные, декоративные колонны. А кроме того посуда, некоторые виды упаковки, трубы всевозможных диаметров. И наконец – знаменитые шляпы, ставшие надолго символом мужской элегантности. Список можно продолжать бесконечно.
Видео:НОВАЯ ТЕХНОЛОГИЯ ЦИЛИНДРА ( The Eternal Cylinder )Скачать
Определение цилиндра как геометрической фигуры
Цилиндром (круговым цилиндром) принято называть фигуру, состоящую из двух кругов, которые при желании совмещаются с помощью параллельного переноса. Именно эти круги и являются основаниями цилиндра. А вот линии (прямые отрезки), связывающие соответствующие точки, получили название «образующие».
Важно, что основания цилиндра всегда равны (если это условие не выполняется, то перед нами – усечённый конус, что-либо другое, но только не цилиндр) и находятся в параллельных плоскостях. Отрезки же, соединяющие соответствующие точки на кругах, параллельны и равны.
Совокупность бесконечного множества образующих — не что иное, как боковая поверхность цилиндра – один из элементов данной геометрической фигуры. Другая её важная составляющая – рассмотренные выше круги. Называются они основаниями.
Видео:Видеоурок по математике "Цилиндр"Скачать
Виды цилиндров
Самый простой и распространённый вид цилиндра – круговой. Его образуют два правильных круга, выступающих в роли оснований. Но вместо них могут быть и другие фигуры.
Читайте также: В двух закрытых цилиндрах без этикеток находятся углекислый
Основания цилиндров могут образовывать (кроме кругов) эллипсы, другие замкнутые фигуры. Но цилиндр может иметь не обязательно замкнутую форму. Например основанием цилиндра может служить парабола, гипербола, другая открытая функция. Такой цилиндр будет открытым или развернутым.
По углу наклона образующих к основаниям цилиндры могут быть прямыми или наклонными. У прямого цилиндра образующие строго перпендикулярны плоскости основания. Если данный угол отличается от 90°, цилиндр – наклонный.
Видео:ПЕРЕЛЕЗЛИ ЧЕРЕЗ ЦИЛИНДР ( The Eternal Cylinder )Скачать
Что такое поверхность вращения
Прямой круговой цилиндр, без сомнения – самая распространённая поверхность вращения, используемая в технике. Иногда по техническим показаниям применяется коническая, шарообразная, некоторые другие типы поверхностей, но 99% всех вращающихся валов, осей и т.д. выполнены именно в форме цилиндров. Для того чтобы лучше уяснить, что такое поверхность вращения, можно рассмотреть, как же образован сам цилиндр.
Допустим, имеется некая прямая a, расположенная вертикально. ABCD – прямоугольник, одна из сторон которого (отрезок АВ) лежит на прямой a. Если вращать прямоугольник вокруг прямой, как это показано на рисунке, объём, который он займёт, вращаясь, и будет нашим телом вращения – прямым круговым цилиндром с высотой H = AB = DC и радиусом R = AD = BC.
В данном случае, в результате вращения фигуры — прямоугольника — получается цилиндр. Вращая треугольник, можно получить конус, вращая полукруг – шар и т.д.
Видео:ЯРОСТЬ ЦИЛИНДРА ( The Eternal Cylinder )Скачать
Площадь поверхности цилиндра
Для того чтобы вычислить площадь поверхности обычного прямого кругового цилиндра, необходимо подсчитать площади оснований и боковой поверхности.
Вначале рассмотрим, как вычисляют площадь боковой поверхности. Это произведение длины окружности на высоту цилиндра. Длина окружности, в свою очередь, равняется удвоенному произведению универсального числа П на радиус окружности.
Площадь круга, как известно, равняется произведению П на квадрат радиуса. Итак, сложив формулы для площади определения боковой поверхности с удвоенным выражением площади основания (их ведь два) и произведя нехитрые алгебраические преобразования, получаем окончательное выражение для определения площади поверхности цилиндра.
Видео:СЕКРЕТ ЦИЛИНДРА ( The Eternal Cylinder )Скачать
Определение объёма фигуры
Объем цилиндра определяется по стандартной схеме: площадь поверхности основания умножается на высоту.
Таким образом, конечная формула выглядит следующим образом: искомое определяется как произведение высоты тела на универсальное число П и на квадрат радиуса основания.
Полученная формула, надо сказать, применима для решения самых неожиданных задач. Точно так же, как объем цилиндра, определяется, например, объём электропроводки. Это бывает необходимо для вычисления массы проводов.
Отличия в формуле только в том, что вместо радиуса одного цилиндра стоит делённый надвое диаметр жилы проводки и в выражении появляется число жил в проводе N. Также вместо высоты используется длина провода. Таким образом рассчитывается объем «цилиндра» не одного, а по числу проводков в оплётке.
Такие расчёты часто требуются на практике. Ведь значительная часть ёмкостей для воды изготовлена в форме трубы. И вычислить объем цилиндра часто бывает нужно даже в домашнем хозяйстве.
Читайте также: Геометрические тела призма цилиндр конус куб
Однако, как уже говорилось, форма цилиндра может быть разной. И в некоторых случаях требуется рассчитать, чему равен объем цилиндра наклонного.
Отличие в том, что площадь поверхности основания умножают не на длину образующей, как в случае с прямым цилиндром, а на расстояние между плоскостями – перпендикулярный отрезок, построенный между ними.
Как видно из рисунка, такой отрезок равен произведению длины образующей на синус угла наклона образующей к плоскости.
Видео:БОГ ЗЕМЛИ И НАСТОЯЩАЯ СИЛА ЦИЛИНДРАСкачать
Как построить развёртку цилиндра
В некоторых случаях требуется выкроить развёртку цилиндра. На приведённом рисунке показаны правила, по которым строится заготовка для изготовления цилиндра с заданными высотой и диаметром.
Следует учитывать, что рисунок приведен без учёта швов.
Видео:СЛУГА БЕСКОНЕЧНОГО ЦИЛИНДРА Eternal Cylinder PartnerСкачать
Отличия скошенного цилиндра
Представим себе некий прямой цилиндр, ограниченный с одной стороны плоскостью, перпендикулярной образующим. А вот плоскость, ограничивающая цилиндр с другой стороны, не перпендикулярна образующим и не параллельна первой плоскости.
На рисунке представлен скошенный цилиндр. Плоскость а под неким углом, отличным от 90° к образующим, пересекает фигуру.
Такая геометрическая форма чаще встречается на практике в виде соединений трубопроводов (колена). Но бывают даже здания, построенные в виде скошенного цилиндра.
Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать
Геометрические характеристики скошенного цилиндра
Наклон одной из плоскостей скошенного цилиндра слегка изменяет порядок расчёта как площади поверхности такой фигуры, так и ее объёма.
Видео:КАК ИЗМЕРИТЬ ЦИЛИНДРЫ? Учимся пользоваться нутромером и микрометромСкачать
Геометрические тела. Цилиндр.
Цилиндр − это геометрическое тело, которое ограничено цилиндрической поверхностью и 2-мя плоскостями, которые параллельны и пересекают ее.
ABCDEFG и abcdefg — это основания цилиндра. Расстояние между основаниями (KM) – высота цилиндра.
Цилиндрические сечения боковой поверхности кругового цилиндра.
Сечения, которые идут параллельно к основанию, будут являться кругами одного радиуса. Сечения, которые параллельны образующим цилиндра — это пары параллельных прямых (AB || CD). Сечения, не параллельные ни основанию, ни образующим, являются эллипсами.
Цилиндрическая поверхность образуется посредством движения прямой параллельно самой себе. Точка прямой, которая выделена, перемещается вдоль заданной плоской кривой – направляющей. Эта прямая называется образующей цилиндрической поверхности.
Прямой цилиндр – это такой цилиндр, в котором образующие перпендикулярны основанию. Если образующие цилиндра не перпендикулярны основанию, то это будет наклонный цилиндр.
Круговой цилиндр – цилиндр, основанием которого является круг.
Круглый цилиндр – такой цилиндр, который одновременно и прямой, и круговой.
Прямой круговой цилиндр определяется радиусом основания R и образующей L, которая равна высоте цилиндра H.
Призма – это частный случай цилиндра.
Видео:Цилиндр, вытянутый вдоль оси Z. Урок33.(Часть2.ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)Скачать
Формулы нахождения элементов цилиндра.
Площадь боковой поверхности прямого кругового цилиндра:
Площадь полной поверхности прямого кругового цилиндра:
Объем прямого кругового цилиндра:
Прямой круговой цилиндр со скошенным основанием либо кратко скошенный цилиндр определяют с помощью радиуса основания R, минимальной высоты h1 и максимальной высоты h2.
Площадь боковой поверхности скошенного цилиндра:
Площадь оснований скошенного цилиндра:
Площадь полной поверхности скошенного цилиндра:
Объем скошенного цилиндра:
Sбок — площадь боковой поверхности;
🔥 Видео
Цилиндр, конус, шар, 6 классСкачать
Микрометр и нутромер. Как измерить цилиндры?Скачать
Объём цилиндраСкачать
Теперь Я ЦИЛИНДР Редкая Мутация - The Eternal Cylinder Прохождение #6Скачать
ГЕОМЕТРИЯ 11 класс: Цилиндр. Площадь поверхностиСкачать
СОЗДАНИЕ ЦИЛИНДРА - ОБЪЕДИНИТЕЛЬ ( The Eternal Cylinder )Скачать
9 класс, 41 урок, ЦилиндрСкачать
Призма и цилиндр. Практическая часть. 11 класс.Скачать
Цилиндры ФараоновСкачать