- Что такое цилиндр: определение, элементы, виды, варианты сечения
- Определение цилиндра
- Основные элементы цилиндра
- Геометрические тела. Цилиндр.
- Формулы нахождения элементов цилиндра.
- Цилиндр
- Обозначение геометрических фигур буквами
- Точка
- Отрезок
- Ломаная линия
- Многоугольники
- Угол
- Как называть цилиндры в геометрии буквами
- Цилиндр (геометрия)
- 💡 Видео
Видео:Миникурс по геометрии. Куб, призма, цилиндр и конусСкачать
Что такое цилиндр: определение, элементы, виды, варианты сечения
В данной публикации мы рассмотрим определение, основные элементы, виды и возможные варианты сечения одной из самых распространенных трехмерных геометрических фигур – цилиндра. Представленная информация сопровождается наглядными рисунками для лучшего восприятия.
Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать
Определение цилиндра
Далее мы подробно остановимся на прямом круговом цилиндре как самой популярной разновидности фигуры. Другие ее виды будут перечислены в последнем разделе данной публикации.
Прямой круговой цилиндр – это геометрическая фигура в пространстве, полученная путем вращения прямоугольника вокруг своей стороны или оси симметрии. Поэтому такой цилиндр иногда называют цилиндром вращения.
Цилиндр на рисунке выше получен в результате вращения прямоугольного треугольника ABCD вокруг оси O1O2 на 180° или прямоугольников ABO2O1/O1O2CD вокруг стороны O1O2 на 360°.
Видео:Видеоурок по математике "Цилиндр"Скачать
Основные элементы цилиндра
- Основания цилиндра – два одинаковых по размеру/площади круга с центрами в точках O1 и O2.
- R – радиус оснований цилиндра, отрезки AD и BC – диаметры (d).
- O1O2 – ось симметрии цилиндра, одновременно является его высотой (h).
- l (AB, CD) – образующие цилиндра и одновременно с этим стороны прямоугольника ABCD. Равны высоте фигуры.
Развёртка цилиндра – боковая (цилиндрическая) поверхность фигуры, развернутая в плоскость; является прямоугольником.
- длина данного прямоугольника равна длине окружности основания цилиндра ( 2πR );
- ширина равна высоте/образующей цилиндра.
Примечание: формулы для нахождения площади поверхности и объема цилиндра представлены в отдельных публикациях.
Видео:Конус. 11 класс.Скачать
Геометрические тела. Цилиндр.
Цилиндр − это геометрическое тело, которое ограничено цилиндрической поверхностью и 2-мя плоскостями, которые параллельны и пересекают ее.
ABCDEFG и abcdefg — это основания цилиндра. Расстояние между основаниями (KM) – высота цилиндра.
Цилиндрические сечения боковой поверхности кругового цилиндра.
Сечения, которые идут параллельно к основанию, будут являться кругами одного радиуса. Сечения, которые параллельны образующим цилиндра — это пары параллельных прямых (AB || CD). Сечения, не параллельные ни основанию, ни образующим, являются эллипсами.
Цилиндрическая поверхность образуется посредством движения прямой параллельно самой себе. Точка прямой, которая выделена, перемещается вдоль заданной плоской кривой – направляющей. Эта прямая называется образующей цилиндрической поверхности.
Прямой цилиндр – это такой цилиндр, в котором образующие перпендикулярны основанию. Если образующие цилиндра не перпендикулярны основанию, то это будет наклонный цилиндр.
Круговой цилиндр – цилиндр, основанием которого является круг.
Круглый цилиндр – такой цилиндр, который одновременно и прямой, и круговой.
Прямой круговой цилиндр определяется радиусом основания R и образующей L, которая равна высоте цилиндра H.
Призма – это частный случай цилиндра.
Видео:ЦИЛИНДР геометрия егэ по математике профильный уровень ЯщенкоСкачать
Формулы нахождения элементов цилиндра.
Площадь боковой поверхности прямого кругового цилиндра:
Площадь полной поверхности прямого кругового цилиндра:
Объем прямого кругового цилиндра:
Прямой круговой цилиндр со скошенным основанием либо кратко скошенный цилиндр определяют с помощью радиуса основания R, минимальной высоты h1 и максимальной высоты h2.
Площадь боковой поверхности скошенного цилиндра:
Площадь оснований скошенного цилиндра:
Площадь полной поверхности скошенного цилиндра:
Объем скошенного цилиндра:
Sбок — площадь боковой поверхности;
Видео:РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДРСкачать
Цилиндр
Цилиндр (от лат. пер. «цилиндрус«) — каток, валик.
Прямым круговым цилиндром называют часть пространства, заключенной внутри цилиндрической поверхности, лежащей между двумя плоскостями, перпендикулярными образующей.
Равносторонний цилиндр — это цилиндр, у которого диаметр основания равен образующей (то есть осевое сечение — квадрат).
Наклонный цилиндр — это цилиндр, образующие которого не перпендикулярны плоскостям его оснований.
Цилиндр можно получить путём вращения прямоугольника вокруг прямой, содержащей любую его сторону.
Высотой цилиндра называется расстояние AC между плоскостями его оснований.
Радиус цилиндра — это радиус основания цилиндра CD и AB.
Образующая цилиндра называется отрезок DB, соединяющий соответственные точки двух окружностей.
Сверху и снизу цилиндр ограничен кругами и называются они основаниями цилиндра.
Осью цилиндра – это прямая, проходящая через центры оснований.
Высота цилиндра и его образующая равны между собой.
1) Основания равны и параллельны.
2) Все образующие цилиндра взаимно параллельны и равны.
3) Все высоты цилиндра взаимно параллельны и равны.
Видео:Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)Скачать
Обозначение геометрических фигур буквами
В математике есть правило: обозначать геометрические фигуры заглавными буквами латинского алфавита. Сегодня мы научимся этому.
Точка
точка А, точка С, точка D, точка Е и точка F.
Отрезок
Сколько всего отрезков на данном чертеже?
Ломаная линия
А эта ломаная линия совсем по-другому, потому что соединение точек у неё другое:
Прочитаю название следующей ломаной линии:
Многоугольники
Угол
Угол обозначается тремя буквами. В середине указывается буква, которая обозначает вершину угла.
1 угол: угол BAC или CAB с вершиной А
2 угол: угол AOD или DOA с вершиной О
3 угол: угол AED или DEA с вершиной Е
4 угол: угол BCD или DCB с вершиной С
Поделись с друзьями в социальных сетях:
Видео:Объём цилиндраСкачать
Как называть цилиндры в геометрии буквами
Ц илиндр, получается в результате вращения прямоугольника вокруг одной из его сторон.
- Цилиндр состоит из двух кругов и множества отрезков .
- Цилиндр – это геометрическое тело, состоящее из двух равных кругов, расположенных в параллельных плоскостях и множества отрезков, соединяющих соответственные точки этих кругов.
- Определения элементов цилиндра :
Основания цилиндра – равные круги, расположенные в параллельных плоскостях
Высота цилиндра — это расстояние между плоскостями его оснований.
Ось цилиндра – это прямая, проходящая через центры основания цилиндра (ось цилиндра является осью вращения цилиндра).
Осевое сечение цилиндра – сечение цилиндра плоскостью, проходящей через ось цилиндра (осевое сечение цилиндра является плоскостью симметрии цилиндра). Все осевые сечения цилиндра – равные прямоугольники
Образующая цилиндра — это отрезок соединяющий точку окружности верхнего основания с соответственной точкой окружности нижнего основания. Все образующие параллельны оси вращения и имеют одинаковую длину, равную высоте цилиндра.
Образующая цилиндра при вращении вокруг оси образует боковую (цилиндрическую) поверхность цилиндра .
Радиус цилиндра – это радиус его основания.
Прямой цилиндр – это цилиндр, образующие которого перпендикулярны основанию.
Равновеликий цилиндр – цилиндр, у которого высота равна диаметру (показать равновеликий цилиндр: кнопкой со значком руки перевести модель обратно в интерактивный режим и изменить значение высоты и радиуса у предложенной модели так, чтобы ).
- Вывод формулы площади боковой поверхности.
Разверткой боковой поверхности цилиндра является прямоугольник со сторонами H и C , где H – высота цилиндра, а C – длина окружности основания. Получим формулы для вычисления площадей боковой S б и полной S п поверхностей: S б = H · C = 2π RH , S п = S б + 2 S = 2π R ( R + H ).
Задача № 1. Вычислить площадь боковой и полной поверхности цилиндра, у которого радиус равен 3 см, а высота 5 см (число пи и ответ округлить до целых).
2. Высота цилиндра равна h , радиус основания R . Найти площадь сечения плоскостью, проведенной параллельно оси цилиндра на, расстоянии a от нее.
Домашнее задание: 522, 524, 526.
Р.S/ кому интересно попрбуйте пройти по ссылке и посмотреть электронный ресурс про цилиндр
для начала на странице установите у себя на ПК модуль ОМS и закачайте модуль. На выскочившей таблице кликните воспроизвести. А дальше по порядку просмотрите все странички.
ВСЕМ СПАСИБО.
Видео:Длина окружности. Площадь круга. 6 класс.Скачать
Цилиндр (геометрия)
Цили́ндр (греч. kýlindros , валик, каток) — геометрическое тело, ограниченное цилиндрической поверхностью (называемой боковой поверхностью цилиндра) и не более чем двумя поверхностями (основаниями цилиндра); причём если оснований два, то одно получено из другого параллельным переносом вдоль образующей боковой поверхности цилиндра; и основание пересекает каждую образующую боковой поверхности ровно один раз.
Бесконечное тело, ограниченное замкнутой бесконечной цилиндрической поверхностью, называется бесконечным цилиндром, ограниченное замкнутым цилиндрическим лучом и его основанием, называется открытым цилиндром. Основание и образующие цилиндрического луча называют соответственно основанием и образующими открытого цилиндра.
Конечное тело, ограниченное замкнутой конечной цилиндрической поверхностью и двумя выделившими её сечениями, называется конечным цилиндром, или собственно цилиндром. Сечения называются основаниями цилиндра. По определению конечной цилиндрической поверхности, основания цилиндра равны.
Очевидно, образующие боковой поверхности цилиндра — равные по длине (называемой высотой цилиндра) отрезки, лежащие на параллельных прямых, а концами лежащие на основаниях цилиндра. К математическим курьёзам относят определение любой конечной трёхмерной поверхности без самопересечений как цилиндра нулевой высоты (данную поверхность считают одновременно обоими основаниями конечного цилиндра). Основания цилиндра качественно влияют на цилиндр.
Если основания цилиндра плоские (и, следовательно, содержащие их плоскости параллельны), то цилиндр называют стоящим на плоскости. Если основания стоящего на плоскости цилиндра перпендикулярны образующей, то цилиндр называется прямым.
В частности, если основание стоящего на плоскости цилиндра — круг, то говорят о круговом (круглом) цилиндре; если эллипс — то эллиптическом.
Объём конечного цилиндра равен интегралу площади основания по образующей. В частности, объём прямого кругового цилиндра равен
,
(где — радиус основания, — высота).
Площадь боковой поверхности цилиндра считается по следующей формуле:
.
Площадь полной поверхности цилиндра складывается из площади боковой поверхности и площади оснований. Для прямого кругового цилиндра:
.
💡 Видео
Как начертить цилиндр в объемеСкачать
ГЕОМЕТРИЯ 11 класс: Цилиндр. Площадь поверхностиСкачать
11 класс. Геометрия. Объем цилиндраСкачать
Объем цилиндра. Практическая часть. 11 класс.Скачать
Геометрия 9 класс (Урок№34 - Тела и поверхности вращения.)Скачать
11 класс, 14 урок, Понятие цилиндраСкачать
Радиус и диаметрСкачать
Объемные Геометрические ФИГУРЫ Загадки для ДЕТЕЙСкачать
КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | МатематикаСкачать
Микрометр и нутромер. Как измерить цилиндры?Скачать
9 класс, 41 урок, ЦилиндрСкачать