Расчет сечения медной шины по длительно допустимым токам нужно проводить в соответствии с главой 1.3 «Правил устройства электроустановок» выпущенных Министерством Энергетики СССР в 1987 году. То есть те самые ПУЭ 1.3.24, знакомые всем электрикам » При выборе шин больших сечений необходимо выбирать наиболее экономичные по условиям пропускной способности конструктивные решения, обеспечивающие наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения (уменьшение количества полос в пакете, рациональная конструкция пакета, применение профильных шин и т. п.).». На основании их выбираются допустимые длительные токи для неизолированных проводов и шин. Кроме того, часто в среде электротехники можно услышать, что это пропускная способность по току медной полосы. Предельно допустимые длительные токи для медных шин прямоугольного сечения ПУЭ 1.3.31 для постоянного и переменного тока при подключении 1 полосы на фазу собраны в нижеследующей таблице токов медных шин:
- Пропускная способность медной шины
- Как узнать сечение шины
- Расчет для медных шин по току
- Пропускная способность по току медной шины
- Ток медной шины по сечению ПЭУ п.1.3.24
- Пропускная способность медной шины
- Таблица токов медных шин прямоугольного сечения
- Таблица шин прямоугольного сечения
- Выбор сечения шинопроводов
- 🎬 Видео
Видео:Как определить сечение кабеля?Скачать
Пропускная способность медной шины
Сечение шины, мм | Постоянный ток, А | Переменный ток, А |
---|---|---|
Допустимый ток шина медная 15×3 | 210 | 210 |
Допустимый ток шина медная 20×3 | 275 | 275 |
Допустимый ток шина медная 25×3 | 340 | 340 |
Допустимый ток шина медная 30×4 | 475 | 475 |
Допустимый ток шина медная 40×4 | 625 | 625 |
Допустимый ток шина медная 40×5 | 705 | 700 |
Допустимый ток шина медная 50×5 | 870 | 860 |
Допустимый ток шина медная 50×6 | 960 | 955 |
Допустимый ток шина медная 60×6 | 1145 | 1125 |
Допустимый ток шина медная 60×8 | 1345 | 1320 |
Допустимый ток шина медная 60×10 | 1525 | 1475 |
Допустимый ток шина медная 80×6 | 1510 | 1480 |
Допустимый ток шина медная 80×8 | 1755 | 1690 |
Допустимый ток шина медная 80×10 | 1990 | 1900 |
Допустимый ток шина медная 100×6 | 1875 | 1810 |
Допустимый ток шина медная 100×8 | 2180 | 2080 |
Допустимый ток шина медная 100×10 | 2470 | 2310 |
Допустимый ток шина медная 120×8 | 2600 | 2400 |
Допустимый ток шина медная 120×10 | 2950 | 2650 |
Купить электротехнические медные и алюминиевые шины можно в нашей компании со склада и под заказ:
Расчет теоретического веса электротехнических шин:
В Невской Алюминиевой Компании Вы можете купить алюминий со склада в Петербурге или заказать доставку по России.
Cклад Невской Алюминиевой Компании расположен по адресу Лиговский пр. д. 266, недалеко от станции метро «Московские Ворота», рядом грузовая магистраль — Витебский проспект, выезды на ЗСД и КАД.
Документы на погрузку выдаются на месте.
Видео:Как определить сечение провода.Скачать
Как узнать сечение шины
Видео:Как определить площадь сечения провода. Выбор провода или кабеля в зависимости от нагрузки.Скачать
Расчет для медных шин по току
Видео:Провода, токопровод, шиныСкачать
Пропускная способность по току медной шины
Ток медной шины по сечению ПЭУ п.1.3.24
Расчет сечения медной шины по длительно допустимым токам нужно проводить в соответствии с главой 1.3 «Правил устройства электроустановок» выпущенных Министерством Энергетики СССР в 1987 году. То есть те самые ПУЭ 1.3.24, знакомые всем электрикам » При выборе шин больших сечений необходимо выбирать наиболее экономичные по условиям пропускной способности конструктивные решения, обеспечивающие наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения (уменьшение количества полос в пакете, рациональная конструкция пакета, применение профильных шин и т. п.).». На основании их выбираются допустимые длительные токи для неизолированных проводов и шин. Кроме того, часто в среде электротехники можно услышать, что это пропускная способность по току медной полосы. Предельно допустимые длительные токи для медных шин прямоугольного сечения ПУЭ 1.3.31 для постоянного и переменного тока при подключении 1 полосы на фазу собраны в нижеследующей таблице токов медных шин:
Кроме таблицы токов медных шин, Вы также можете изучить материалы
Видео:Всем электрикам! Допустимый длительный ток для проводов. Полный разбор Таблицы 1.3.4 ПУЭ!Скачать
Пропускная способность медной шины
Таблица токов медных шин прямоугольного сечения
Сечение шины, мм | Постоянный ток, А | Переменный ток, А |
---|---|---|
Допустимый ток шина медная 15×3 | 210 | 210 |
Допустимый ток шина медная 20×3 | 275 | 275 |
Допустимый ток шина медная 25×3 | 340 | 340 |
Допустимый ток шина медная 30×4 | 475 | 475 |
Допустимый ток шина медная 40×4 | 625 | 625 |
Допустимый ток шина медная 40×5 | 705 | 700 |
Допустимый ток шина медная 50×5 | 870 | 860 |
Допустимый ток шина медная 50×6 | 960 | 955 |
Допустимый ток шина медная 60×6 | 1145 | 1125 |
Допустимый ток шина медная 60×8 | 1345 | 1320 |
Допустимый ток шина медная 60×10 | 1525 | 1475 |
Допустимый ток шина медная 80×6 | 1510 | 1480 |
Допустимый ток шина медная 80×8 | 1755 | 1690 |
Допустимый ток шина медная 80×10 | 1990 | 1900 |
Допустимый ток шина медная 100×6 | 1875 | 1810 |
Допустимый ток шина медная 100×8 | 2180 | 2080 |
Допустимый ток шина медная 100×10 | 2470 | 2310 |
Допустимый ток шина медная 120×8 | 2600 | 2400 |
Допустимый ток шина медная 120×10 | 2950 | 2650 |
Купить электротехнические медные и алюминиевые шины можно в нашей компании со склада и под заказ:
Расчет теоретического веса электротехнических шин:
Присылайте ваши заявки на покупку алюминиевого и медного проката на нашу почту Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
Санкт-Петербург, Лиговский, 266
© Невская Алюминиевая Компания, 2019
В таблице сведены данные мощности, тока и сечения кабельно-проводниковых материалов, для расчетов и выбора защитных средств, кабельно-проводниковых материалов и электрооборудования.
Медные жилы, проводов и кабелей
Алюминивые жилы, проводов и кабелей
В расчете применялись: данные таблиц ПУЭ; формулы активной мощности для однофазной и трехфазной симметричной нагрузки
Видео:Расчёт сечения кабеляСкачать
Таблица шин прямоугольного сечения
Шины прямоугольного сечения медные, алюминиевые и стальные при одной полосе на фазу при переменном токе.
Видео:Как выбрать сечение провода.Скачать
Выбор сечения шинопроводов
Электроснабжение > Шины и шинопроводы в системах электроснабжения
ВЫБОР СЕЧЕНИЯ ШИНОПРОВОДОВ
При прохождении тока по проводнику последний нагревается. Количество энергии, выделенное неизменным током, определяется из выражения:
где — количество выделенного тепла, Вт Ч с; I — ток в проводнике, A; R — сопротивление проводника, Ом; t — время прохождения тока, с.
Часть выделяемого тепла идет на повышение температуры проводника, а часть отдается в окружающую среду.
Находящиеся в воздухе шины охлаждаются главным образом путем конвекции, обусловленной движением воздуха вблизи поверхности проводника. Отвод тепла путем лучеиспускания невелик вследствие сравнительно малых температур нагрева проводника. Отвод тепла за счет теплопроводности ничтожен из-за малой теплопроводности воздуха.
Температура токопровода при прохождении тока повышается до наступления теплового равновесия, когда тепло, выделяемое в проводнике, оказывается равным теплу, отводимому с его поверхности в окружающую среду. Превышение температуры проводника над температурой окружающей среды пропорционально количеству выделяемого тепла, а следовательно, квадрату длительно проходящего но проводнику тока и зависит от условий прокладки шин.
Задача расчета шин на нагревание обычно сводится к определению тока, при котором температура проводника не превышает допустимого значения. При этом должны быть известны допустимая температура нагрева проводника, условия его охлаждения и температура окружающей среды. Предельно допустимая температура нагрева шин при длительной работе равна 70°С. Такая температура в основном принята для обеспечения удовлетворительной работа болтовых контактов, как правило, имеющихся в ошиновках. При кратковременном нагреве, например, токами к. з. допустимы предельные температуры для медных шин 300°С, для алюминиевых 200°С. Длительная работа шин при температуре, превышающей 110°С, приводит к значительному снижению их механической прочности вследствие отжига. Расчетная температура окружающей среды для голых проводников по действующим ПУЭ принята 25°С.
Нагрузочная способность проводника характеризуется длительно допустимым током нагрузки, определенным из условий нагрева его при заданных разностях температур проводника и окружающей среды .
Рассмотрим определение нагрузочной способности однородных неизолированных проводников. При тепловом равновесии количество тепла, выделяемое за единицу времени током I в проводе сопротивлением R, равно количеству тепла, отводимому в окружающую среду за то же время:
где — коэффициент теплоотдачи путем конвекции и лучеиспускания (теплопроводность воздуха мала), равный количеству тепла, отводимому в окружающую среду с поверхности проводника при разности температур между проводником и окружающей средой ; F — поверхность охлаждения проводника, ; — температуры проводника и окружающей среды, °С.
Если температуру нагрева проводника приравнять длительно допустимой и принять расчетную температуру окружающей среды , то из условия (10-22) можно определить длительно допустимый ток:
Таким образом, при заданных температурных условиях нагрузочная способность проводника возрастает с увеличением его поверхности охлаждения F, коэффициента теплоотдачи и уменьшением его электрического сопротивления .
Вычисление длительно допустимых токов по указанным формулам достаточно сложно, поэтому в практических расчетах электросетей используют готовые таблицы длительно допустимых токов нагрузки на шины из разных материалов и при разных условиях прокладки, определенных при длительно допустимой температуре окружающей среды. В связи с этим проверка шинопроводов на нагревание сводится к проверке выполнения условия
где — максимальный рабочий ток цепи, в которую включен проводник; — длительно допустимый из условий нагрева тока нагрузки шинопровода.
Наличие явления поверхностного эффекта приводит к тому, что при переменном токе активное сопротивление всегда несколько больше, чем при постоянном. Поэтому согласно формуле (10-23) при прочих равных условиях допустимый ток нагрузки проводника при переменном токе несколько меньше, чем при постоянном. Наиболее существенно это явление сказывается при сплошном сечении шинопровода, например шинопровода прямоугольного сечения.
Иногда применяют шинопроводы трубчатого сечения. В неразрезанных трубах используется металл, расположенный только по поверхности сечения, в результате чего повышение сопротивления от поверхностного эффекта невелико и допустимые нагрузки при постоянном и переменном токах примерно одинаковы.
В установках всех напряжений жесткие шины окрашивают цветными эмалевыми красками. Помимо того, что это облегчает ориентировку и предотвращает коррозию шин, окраска также влияет на нагрузочную способность шин. Постоянное лучеиспускание окрашенных шин значительно больше, чем неокрашенных, поэтому охлаждение шин путем лучеиспускания улучшается, а это в свою очередь приводит к увеличению нагрузочной способности шин. При неизменных температурных условиях допустимый ток нагрузки окрашенных шин на 12—15% больше, чем неокрашенных.
Наибольшая алюминиевая шина прямоугольного сечения 120х10 мм кв. имеет длительно допустимый ток при переменном токе, равный 2070 А. При большем токе нагрузки применяют на фазу несколько полос, собранных в общий пакет и укрепленных совместно на опорных изоляторах. Расстояние между полосами в пакете нормально составляет толщину одной полосы, что необходимо для охлаждения шины в пакете. С увеличением числа полос на фазу допустимая нагрузка возрастает непропорционально числу полос в пакете. При переменном токе, кроме того, еще сказывается эффект близости (подробнее см. раздел). Все это приводит к тому, что нагрузочная способность пакета из нескольких шин меньше, чем суммарная нагрузочная способность того же количества одинаковых шин таких же размере.
Для того чтобы в условиях эксплуатации не имело места превышение допустимых потерь напряжения, шинопроводы рассчитываются по потерям напряжения, как изложено в разделе.
ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ ДЛЯ НЕИЗОЛИРОВАННЫХ ШИН
Допустимые длительные токи для окрашенных шин приведены в таблицах ниже. Они приняты из расчета допустимой температуры их нагрева + 70 °С при температуре воздуха +25 °С.
При расположении шин прямоугольного сечения плашмя токи, приведенные в таблице для шин прямоугольного сечении, должны быть уменьшены на 5 % для шин с шириной полос до 60 мм и на 8 % для шин с шириной полос более 60 мм.
При выборе шин больших сечений необходимо выбирать наиболее экономичные но условиям пропускной способности конструктивные решения, обеспечивающие наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения (уменьшение количества полос в пакете, рациональная конструкция пакета, применение профильных шин и т.п.).
Допустимый длительный ток для шин круглого и трубчатого сечений
Допустимый длительный ток для шин прямоугольного сечения
Допустимый длительный ток для четырехполосных шин с расположением полос по сторонам квадрата («полый пакет»)
🎬 Видео
Автомат на 16А для кабеля 2,5мм! Дурные советы электрикаСкачать
Как считать размер шин. Расчёт и расшифровка размеров и обозначений.Скачать
Как выбрать провод, автоматы и УЗО? Как рассчитать сечение кабеля, силу тока, мощность.Скачать
Как рассчитать нагрузку кабеля быстро и правильно? Какую нагрузку выдерживают кабеля?Скачать
Что означает маркировка на шинах! Значение цифр и букв на резине.Скачать
Почему чаще отгорает ноль, а не фаза? #энерголикбезСкачать
Выбор сечения кабеляСкачать
как определить сечение проводаСкачать
ОБ ЭТОМ МНОГИЕ ДАЖЕ НЕ ДОГАДЫВАЮТСЯСкачать
Очень опасные ошибки в щитах учётаСкачать
Почему никто не знает об этой функции штангенциркуля?!Скачать
Формулы для расчета сечения кабеля и проводаСкачать
🔌 Как определить сечение провода или жил кабеля? 6 способовСкачать