Как определить температуру газа в цилиндре

Авто помощник

Для расчета мощности турбины необходимо знать темпера­туру выпускных газов на входе в нее. Выпуск газов из цилиндра является сложным газодинамическим процессом, при котором давление, температура и скорость газов в трубопроводе непре­рывно изменяются. При шаговом расчете кругового процесса масса и температура газов, поступающих в выпуск­ной трубопровод, рассчитываются для каждого шага, причем посредством интегрирования может быть найдена средняя тем­пература выпускного газа. Рассмотрим теперь этот процесс в пред­положении, что давление в выпускном трубопроводе остается постоянным и что в конце хода выталкивания во всем выпускном коллекторе температура одинакова. Выпускные газы расши­ряются от давления, соответствующего точке 5ц, до давления р3 перед турбиной (рис. 7.1).

Температура газов после перемешивания Т3 (средняя темпера­тура), которую они имеют после окончания процесса выталкива­ния, будет ниже, чем температура газов в конце расширения в ци­линдре, но, под действием преобразования энергии завихрения потока, выше, чем температура изоэнтропийного расширения, начинающегося в точке 5ц.

С целью упрощения состояние, соответствующее концу расши­рения в цилиндре (5 ц), в последующем будем обозначать только индексом ц (цилиндр). В случае совершенного двигателя (при отсутствии потерь теплоты в стенки) процесс выпуска можно разбить на следующие частичные процессы (рис. 7.2 [7.1]).

1. При открытии выпускного клапана (в случае идеального двигателя это происходит бесконечно быстро при положении порш­ня в нижней мертвой точке) часть отработавшего газа устремляется из цилиндра в выпускной трубопровод. Заряд в цилиндре охлаж­дается при этом изоэнтропийно, высвобождающаяся вследствие этого работа затрачивается на придание потоку скорости в сече­нии выпускного клапана. В выпускном трубопроводе энергия скорости вследствие завихрений вновь преобразуется в теплоту. В качестве эквивалентного процесса представим себе, что перед открытием выпускного клапана в выпускном трубопроводе не­посредственно к клапану примыкает поршень K2, нагруженный давлением р3 (рис. 7.2, а).

2. При открытии выпускного клапана поршень K2 при еще неподвижном рабочем поршне K1 передвигается вправо до тех пор, пока в цилиндре не установится давление р3 (рис. 7.2, б). Промежуточное положение поршня K2 на рис. 7.2, б в данном случае нас не интересует.

3. Затем рабочий поршень К1 перемещается из левой (ниж­ней) в правую (верхнюю) мертвую точку, а поршень K2 еще дальше вправо (рис. 7.2, в). Все содержимое цилиндра теперь находится в выпускном трубопроводе и после перемешивания принимает состояние, характеризующееся параметрами р3, V3, Т3. При перетекании и движении газа по трубопроводу поршень K2 под воздействием газа совершает работу р3V3. Для выталкивания газа из цилиндра затрачивается работа, совершаемая поршнем К1 она равна р3Vц. В соответствии с этим суммарная работа, произве­денная газом, составит р3 (V3Vц). Так как отсутствует преобра­зование теплоты, то согласно первому закону термодинамики можно записать

Читайте также: Что такое свод цилиндра

Если допустить, что в цилиндре нет остаточных газов, то массы газа в левой и правой частях уравнения равны, и, отнеся их к 1 кг, получим

в то время как для адиабатного расширения от температуры 1200 К получается

В реальном случае, однако, имеют место значительные потери теплоты выпускных газов в охлаждаемом выпускном канале крышки цилиндра (в связи с высокой скоростью потока) [7.2], а также потери теплоты в неохлаждаемом, но не полностью тепло­изолированном выпускном трубопроводе и в газоподводящем корпусе турбины. С учетом этих потерь теплоты можно прибли­женно определить температуру адиабатного расширения на входе в турбину [7.3 ] по выражению

Видео:ТОСОЛ в ЦИЛИНДРАХ Симптомы Диагностика Ремонт (К4М)Скачать

ТОСОЛ в ЦИЛИНДРАХ Симптомы Диагностика Ремонт (К4М)

Расчет температуры газов в цилиндре

Расчет температуры газов в цилиндре выполняем для тактов сжатия Тг.с. и сгорания – расширения Тг.р. (К) по уравнению:

кг/цикл-масса газа в цилиндре;

bz = 1 – коэффициент молекулярного изменения на такте сжатия;

R – газовая постоянная, которую с достаточной точностью можно принять

равной 0,287 кДж/(кгК) на такте сжатия и 0,3 кДж/(кгК) – на такте сгорание – расширение. Результаты расчета записываем в таблицу 3.6.

Таблица 3.8 – Результаты расчета индикаторной диаграммы

j, град. п.к.в.VТ, м 3 ×10 3ЕТСжатие РГ.С, МПа ТГ.С., КСгорание-расширение РГ.Р , Мпа ТГ.Р., К

Расчет системы наддува двигателя

Видео:Проверить прокладку ГБЦ на прогар теперь сможет каждый. Все простоСкачать

Проверить прокладку ГБЦ на прогар теперь сможет каждый. Все просто

Как определить температуру газа в цилиндре

Главное меню

Судовые двигатели

Процесс передачи тепла от газов к охлаждающей жидкости в цилиндре двигателя разбивается на три этапа: теплоотдача от газов к стенке цилиндра; теплопередача через стенки цилиндра и теплоотдача от наружной поверхно­сти стенок цилиндра к охлаждающей среде. Теплоотдача от газов к стенке цилиндра про­исходит главным образом путем соприкосно­вения. Радиационная составляющая теплооб­мена принимается равной около 5% . Однако некоторые исследования последних лет пока­зывают, что лучистый теплообмен в цилиндре дизеля достигает 15% от всего передаваемого тепла. При установившемся тепловом потоке, и если принять стенку цилиндра плоской, сог­ласно закону Ньютона, количество теплоты, переданное от газов к 1 м 2 поверхности стен­ки в течение часа, будет равно

где ? г — коэффициент теплоотдачи от газов к стенке путем соприкоснове­ния в ккал1м 2 град·ч;

Читайте также: Скорость хода поршня в цилиндре

Т Г — температура газов в цилиндре;

Т 1 — температура внутренней поверхности стенки цилиндра (рис. 106).

Количество теплоты, передаваемое лучеиспусканием от газов к стенке, согласно закону Стефана-Больцмана, будет равно

Здесь Т п — температура во фронте пламени, которая, по опытным данным, выше температуры газов примерно на 25% .

Суммарное количество теплоты, передаваемое от газов к стенке,

Обычно, ввиду малого значения, величиной q л пренебрегают, а потому

Количество теплоты, передаваемое через стенку цилиндра, согласно закону Фубье,

исключим температуру наружной поверхности стенки цилиндра Т 2 , опре­делим тепловую нагрузку цилиндра в зависимости от температуры внутрен­ней поверхности стенки цилиндра Т 1 и температуры охлаждающей воды Т в :

Последнее уравнение показывает, что чем больше тепловая нагрузка цилиндра, чем выше температура охлаждающей воды T в , и чем больше тол­щина стенки цилиндра s’, тем выше будет температура внутренней поверх­ности стенки цилиндра.

Температурный перепад по толщине стенки цилиндра равен

Возникающие тепловые напряжения в стенках цилиндра пропорциональны температурному перепаду и их толщине.

Отсюда следует, что с увеличением тепловой нагрузки и толщины сте­нок цилиндра тепловые напряжения в стенках его возрастают.

Подставляя в формулу (173) значение допустимой температуры внутрен­ней поверхности стенок цилиндра t 1 °С, получим значение максимально до­пустимой тепловой нагрузки цилиндра (при данных значениях t в , ? в , s’ и ? 0 ):

Обозначим термическое сопротивление теплопередачи от внутренней по­верхности стенок цилиндра к охлаждающей воде через

тогда уравнение тепловой нагрузки можно написать так:

Отсюда находится мгновенное значение температуры внутренней поверх­ности стенки цилиндра

Вследствие пульсирующего теплового потока в цилиндре двигателя температура внутренней поверхности стенок его колеблется. Опытные дан­ные показывают, что эти колебания незначительны и ими можно пренебречь. Температура значительно изменяется вдоль поверхности цилиндра и порш­ня. На рис. 107 показаны типичные температурные кривые поршня без жид­костного охлаждения, а на рис. 108 — типичная кривая изменения темпера­туры внутренней поверхности стенок цилиндра.

На рисунках также показаны значения температур поршня из алюминиевого сплава и втулки ци­линдра на глубине 0,38 мм быстроходного двигателя п = 2 000 об/мин. ( D = 121 мм, S = 140 мм) при температуре охлаждающей воды 70° С и скорости ее потока в зарубашечном пространстве 0,152 м/сек. Рассмотрение температурных кривых показывает, что средняя температура направляющей .части поршня мало отличается от температуры внутренней поверхности стенки цилиндра, а следовательно, теплопередача от поршня через направ­ляющую часть его является незначительной. Наибольшая разница темпера­тур имеет место между боковой поверхностью головки поршня (в районе верхних двух колец) и поверхностью втулки цилиндра, а отсюда можно сделать вывод, что наибольшее количество теплоты отводится от поршня че­рез верхние поршневые кольца.

Читайте также: Цилиндр тормозной урал механизм клиновой wabco ао аз урал 12739074

Как следует из формулы (161), тепловая нагрузка цилиндра возрастает пропорционально увеличению его диаметра:

В связи с этим конструкция головки поршня (особенно при больших диаметрах цилиндров) должна обеспечить наиболее равномерный отвод тепла и тем самым не допускать большого перепада температур в донышке поршня.

Увеличение тепловой нагрузки донышка поршня при наддуве мощных дизелей послужило причиной замены масляного охлаждения головки порш­ня водяным. Масляное охлаждение, вследствие малой теплоемкости масла, не всегда достигает требуемого снижения температуры поршня и поршневых колец.

На рис. 109 показано распределение температур в поршне с масляным охлаждением и верхней части рабочей втулки опытного цилиндра двух­тактного дизеля фирмы «Зульцер» с диаметром цилиндра 760 мм и р е = 7 кГ/см 2 (цилиндровая мощность 1500 л. с.). Донышко поршня имеет одинаковую толщину, оно плоское с уклоном по периферии. Верхняя часть втулки цилиндра защищена от непосредственного воздействия пламени вставным кольцом, изготовленным из жаропрочной стали и, благодаря нали­чию ребер, имеет интенсивное охлаждение.

Как видно из рис. 109, температурный перепад для чугунной втулки ци­линдра допустим, но все же довольно высок. Особенно высоким является перепад температур в донышке поршня.

На рис. 110 показано распределение температур в поршне и во втулке цилиндра этого же дизеля (РД-76) с водяным охлаждением при р е =10 кГ/см 2 . Наличие ребер внутри головки поршня позволило уменьшить толщину днища поршня. Уменьшение толщины днища поршня и примене­ние водяного охлаждения позволили снизить температурный перепад в пор­шне, несмотря на повышенное значение среднего эффективного давления (р е = 10 кГ(см 2 ).

Среднее значение температуры внутренней поверхности стенки цилиндра (T 1 ) ср в соответствии с формулой (177) будет равно

где значения (? г Т г ) ср и (? г ) ср определяются путем планиметрирования площади под кривыми ? г = f (?) и ? г Т г = f(?) (? — угол поворота вала двигателя).

Мгновенное значение температуры газов Т г определяется из урав­нения состояния

где значения р и V в зависимости от угла ? определяются по индикаторной диаграмме двигателя;

G — вес свежего заряда цилиндра с учетом остаточных газов.

Средняя результирующая температура газов по теплопередаче опреде­ляется из условия равенства передачи тепла стенке при пульсирующем по­токе тепла за один цикл и в предположении стационарного потока:

Коэффициент теплопередачи от наружной поверхности втулки рабочего цилиндра к охлаждающей воде

Средняя температура стенки втулки цилиндра

Количество теплоты, выделяющееся в цилиндре в течение одного часа,

Доля тепла от выделяемого в цилиндре и передаваемая охлаждаю­щей воде,

🎬 Видео

Как определить почему троит двигательСкачать

Как определить почему троит двигатель

Курс автодиагностики, Что такое угол опережения зажигания, Как он разрушает мотор?Скачать

Курс автодиагностики, Что такое угол опережения зажигания, Как он разрушает мотор?

1 часть: 1-й признак отсутствия компрессии из-за износа поршневой группы, Sprinter 316CDI 2.7Скачать

1 часть: 1-й признак отсутствия компрессии из-за износа поршневой группы, Sprinter 316CDI 2.7

ПРОГАР ПРОКЛАДКИ ПОД ГОЛОВКОЙ.ОДИН ИЗ ПРИЗНАКОВ.НАГЛЯДНО!!!Скачать

ПРОГАР ПРОКЛАДКИ ПОД ГОЛОВКОЙ.ОДИН ИЗ ПРИЗНАКОВ.НАГЛЯДНО!!!

разница компрессии на холодную и горячуюСкачать

разница компрессии на холодную и горячую

Газы в Системе охлаждения. Признаки и лучший способ проверки. Обзор инструмента.Скачать

Газы в Системе охлаждения. Признаки и лучший способ проверки. Обзор инструмента.

ДТОЖ ЗМЗ 406.Значимость в системе управления двигателем.Скачать

ДТОЖ ЗМЗ 406.Значимость в системе управления двигателем.

От зазора на свечах зажигания многое зависит, какой зазор лучшеСкачать

От зазора на свечах зажигания многое зависит, какой зазор лучше

Связь между давлением, объёмом и температурой газаСкачать

Связь между давлением, объёмом и температурой газа

Плавают обороты холостого хода? Полезные советы, почему плавают обороты?Скачать

Плавают обороты холостого хода? Полезные советы, почему плавают обороты?

Забудьте всё что слышали про бензин! Это прорыв! Двигатель на нагретом бензопаре!Скачать

Забудьте всё что слышали про бензин! Это прорыв! Двигатель на нагретом бензопаре!

Трещина в ГБЦ: какие признаки и как проверить? Ремонт ГБЦ трещин 3 способа!Скачать

Трещина в ГБЦ: какие признаки и как проверить? Ремонт ГБЦ трещин 3 способа!

ПРОВЕРЬТЕ свою ПРОКЛАДКУ ГБЦ (быстро), иначе проблем не избежать...Скачать

ПРОВЕРЬТЕ свою ПРОКЛАДКУ ГБЦ (быстро), иначе проблем не избежать...

ПОСЛЕ ЭТОГО УРОВЕНЬ АНТИФРИЗА ПЕРЕСТАНЕТ ПАДАТЬСкачать

ПОСЛЕ ЭТОГО УРОВЕНЬ АНТИФРИЗА ПЕРЕСТАНЕТ ПАДАТЬ

Температура в +300 градусов Цельсия на стенке цилиндра. Возможны ли такие температуры?Скачать

Температура в +300 градусов Цельсия на стенке цилиндра. Возможны ли такие температуры?

Зависимость давления газа от его температурыСкачать

Зависимость давления газа от его температуры

Связь между давлением и объёмом газаСкачать

Связь между давлением и объёмом газа

Насколько поднимется температура при сжатии газа?Скачать

Насколько поднимется температура при сжатии газа?
Поделиться или сохранить к себе:
Технарь знаток