Блок управления пропорциональным клапаном гидравлической системы.
Этот модуль был специально разработан мною, для восстановления работоспособности техники, после отказа работы электроники ЭБУ (Электронного Блока Управления), и по какой-то причине невозможно его восстановить. ЭБУ отвечало за разные решения по безопасности, и плавности управления пропорциональными клапанами гидравлической системы , плавного старта — рабочий режим — плавная остановка. Если вы попытаетесь управлять пропорциональным клапаном напрямую, просто подав питание на электромагнитную катушку, то клапан откроется сразу, и появится мощное «дёргание», при старте — и при остановке. Что-бы устранить проблему поможет этот модуль. Модуль самостоятельный, и не нуждается в ЭБУ. То-есть с помощью таких модулей вы решаете проблему плавного старта — рабочего режима — плавной остановки, и фактически можете отказаться от ЭБУ. Управлять модулем можно: Тумблерами, кнопками, аналоговыми джойстиками, радио управлением, просто подав плюс питания на модуль как управляющий сигнал. Модуль управляет пропорциональным клапаном при помощи ШИМ. Принципы работы ШИМ и пропорциональным клапаном описываю ниже:
Принцип работы пропорционального электромагнитного клапана (Рисунок 1).
В этом устройстве (рис. 1) в отличие от дискретных электромагнитов постоянного тока предусмотрена конусная вставка 1 из немагнитного материала, изменяющая форму линий магнитного поля. В результате управляющий ток в катушке 2 создает электромагнитное поле, вызывающее продольное смещение ферромагнитного якоря 3 с силой, пропорциональной силе тока. Якорь взаимодействует с подпружиненным запорно-регулирующим элементом гидроаппарата (золотником, конусом предохранительного клапана, втулкой дросселя), причем наложение линейной характеристики пружины на силовую характеристику магнита показывает, что осевое смещение (ход) якоря пропорционально току управления. Управление пропорциональным электромагнитным клапаном производится с помощью электронной схемой управления с ШИМ сигналом,и достигается за счет широтно-импульсной модуляции.
Принцип регулирования мощности в нагрузке с помощью ШИМ.
Широтно-Импульсная Модуляция — это способ кодирования аналогового сигнала путём изменения ширины (длительности) прямоугольных импульсов несущей частоты. На Рис. 2 представлены типичные графики ШИМ сигнала при разной скважности.
Описание модуля.
Модуль подключается согласно выставленной схемы. После подключения модуля, пропорциональным клапаном возможно управлять двумя способами: 1. Ручном режиме. 2 .Автоматическом режиме. После подключения модуля его надо отрегулировать под вашу гидравлическую систему. У модуля есть 4 канала AЦП (аналого-цифровой преобразователь, далее АЦП). В чем заключается принцип работы АЦП микроконтроллера? Аналого-цифровые преобразователи являются приборами, которые физическую величину превращают в соответствующее числовое представление. То-есть при помощи изменения сопротивления трех резисторов, превращают физическую величину в соответствующее числовое представление. Каждый канал АЦП отвечает за свой параметр:
Первый канал АЦП — При помощи переменного резистора (потенциометра) подключённого к этому каналу АЦП, можно регулировать в РУЧНОМ РЕЖИМЕ
Второй канал АЦП — отвечает за минимальную выдаваемую мощность. И можно отрегулировать их в пределах: от 0% — до 100% с дискретностью 0,39%. И служит для регулировки притягивания якоря катушки ДО зоны начала открывания. Регулировки используются как в ручном так и в автоматическом режиме.
Третий канал АЦП — отвечает за максимальную выдаваемую мощность. И можно отрегулировать их в пределах: от 0% — до 100% с дискретностью 0,39%. И служит для регулировки притягивания якоря катушки и ограничения открывания канала пропорционального клапана. Регулировки используются как в ручном так и в автоматическом режиме.
Четвертый канал АЦП — отвечает за плавность старта и остановки. И может быть отрегулирован в пределах: от 1 секунды — до 60 секунд, то-есть полная скорость развивается плавно в АВТОМАТИЧЕСКОМ РЕЖИМЕ, за время выставленное этим параметром (параметр активен только в автоматическом режиме), остановка происходит автоматически после отсутствия последнего положительного сигнала на терминал блоке, с плавной остановкой, в 10 раз быстрее чем старт, чтобы смягчить возможный гидроудар. Если плавная остановка не нужна — укажите это при заказе, будет откорректирована прошивка.
Все регулировки делаются путём прокручивания отвёрткой винтиков много-оборотистых резисторов для точной настройки параметров. Прокручивание по часовой стрелки — увеличивает параметр, прокручивание против часовой стрелки — уменьшает параметр. После настройки трёх параметров АЦП, модуль готов к работе. Клапан нужен именно пропорциональный (ну это и так понятно), ведь обычный электроклапан имеет только два состояния: Открытый и закрытый. Модуль имеет защиту от переплюсовки, неправильной подачи питания.
Для перевода управления модуля в автоматическом режиме, надо на плате установить перемычку (JAMPER), как только установите перемычку рядом с ним начнёт светится красный светодиод LED1, сигнализируя вход в автоматический режим управления, плавное возрастание ШИМ сигнала начнётся в тот момент когда на любой контакт терминала Т1-Т8 поступит +12 или +24 вольта от команд управления спецтехники. На терминалах присутствует диодная развязка. При поступления положительного сигнала — зажигается красный светодиод LED2. Когда автоматический режим активен — первый канал АЦП отключён, и на него микроконтроллер не реагирует, но активен четвёртый канал АЦП которым можно отрегулировать скорость возрастания ШИМ сигнала. Второй и третий канал АЦП активны как в ручном, так и в автоматическом режиме. В ручном режиме, наоборот, Первый-второй-третий канал АЦП активны а четвёртый отключён. Для подключения ручного режима — надо удалить перемычку с платы, при этом LED1 погаснет.
Модуль снабжен 10 сегментным LED индикатором (сейчас в продаже есть 10 сегментные индикаторы в одном корпусе, и они дешевле чем собирать их из 10 отдельных светодиодов и эстетически смотрятся лучше, но в случае выхода из строя одного сегмента, придется менять весь индикатор, и затрудняет ремонт). Каждый сегмент индикатора соответствует 10% выдаваемой мощности. На LED индикаторе выводится одночасно информация по трём параметрам, В РУЧНОМ РЕЖИМЕ: АЦП-2 (Минимально), АЦП-3 (Максимально), АЦП-1 (Рабочий ручной режим). И В АВТОМАТИЧЕСКОМ РЕЖИМЕ: АЦП-2 (Минимально), АЦП-3 (Максимально), и мощность нарастания и уменьшения ШИМ сигнала. И это всё в реальном времени. На видео можно более наглядно увидеть суть чтения параметров, хоть индикатор не задумывался для получения высокоточной информации, и так понятно что с 10 сегментного индикатора невозможно этого добиться. Индикатор предназначен для приблизительного понятия что происходит в момент работы или настройки модуля, но для работы высокой точности вывода информации и не нужно, но каналы АЦП имеют достаточно высокую дискретность чтобы добиться тонкой настройки параметров.
Модуль можно заказать с частотой ШИМ в двух вариантах: 244 Hz, 488 Hz, если клиент не указывает этот параметр при заказе — тогда будет отправлен вариант 488 Hz.
А так же частоту работы ШИМ можно регулировать самому без перепрошивки модуля, для этого достаточно заменить кварц на необходимый из этой таблицы чтобы в результате получить необходимую частоту работы ШИМ сигнала. Обратите внимание: Первое значение это частота кварца. Второе значение это получаемая частота. Третье значение это частота ШИМ которое можно получить но только путём перепрошивки, и этот параметр могу изменить только я в самой прошивке. Для этого можете связаться со мной.
Читайте также: Сколько клапанов в сердце коровы
КВАРЦ / частота ШИМ / (требует изменения в прошивке)
1 мГц = 61 Hz — (и до 122 Hz в прошивке).
2 мГц = 122 Hz — (и до 200 Hz в прошивке).
3.27 мГц = 200 Hz — (и до 244 Hz в прошивке).
4 мГц = 244 Hz — (и до 305 Hz в прошивке).
5 мГц = 305 Hz — (и до 488 Hz в прошивке).
8 мГц = 488 Hz — (и до 610 Hz в прошивке).
10 мГц = 610 Hz -( и до 732 Hz в прошивке).
12 мГц = 732 Hz — (и до 1 KHz в прошивке).
Технические характеристики:
Рабочее напряжение: от 12V — до24V
Выход: 1
Максимальная нагрузка на выход: 10А
АЦП каналов: 4
1 АЦП (ручной режим): от 0% — до 100% с дискретностью 0,39%. 255 шагов.
2 АЦП (мин): от 0% — до 100% с дискретностью 0,39%. 255 шагов.
3 АЦП (мах): от 0% — до 100% с дискретностью 0,39%. 255 шагов.
4 АЦП (авто. режим): от 1 секунды — до 60 секунд с дискретностью 0,24сек. 255 шагов.
Индикация LED: Да, 10 сегментный, от 0% — до 100% с дискретностью 10%
Частота ШИМ: 244 Hz*, 488 Hz*. (*указать нужное)
Габаритные размеры, ДхШхВ, мм: 83х60х30
Код товара (артикул): UPK
Комплектация: Модуль, инструкция, схема подключения.
(Видео настроек модуля для управления пропорциональными клапанами которые управляются силой тока).
- Управление клапанами и задвижками (МЭО) в системах регулирования технологического процесса
- Примеры процессов в которых используется управление клапанами и задвижками (МЭО)
- Особенности управления клапанами и задвижками (МЭО)
- Линейка регуляторов для управления клапанами серии KUBE
- Управление клапанами с обратной связью по положению
- Программные особенности KUBE
- Аварии и тревоги
- 📸 Видео
Управление клапанами и задвижками (МЭО) в системах регулирования технологического процесса
Обратите внимание так же внимание на статьи:
В различных отраслях используются регулирующие клапаны управления температурой, влажностью, давлением, уровнем, концентрацией, весом и т.п., путем изменения расходов жидкостей, газов или сыпучих материалов. В данной статье рассматриваются автономные приборы (регуляторы, контроллеры) и их особенности, предназначенные для подобного типа управления.
Примеры процессов в которых используется управление клапанами и задвижками (МЭО)
Видео:Уроки Ардуино #11 - плавное управление нагрузкой, ШИМ сигналСкачать
Для понимания о каких процессах идет речь приведем примеры:
I. При необходимости поддержания заданной температуры путем:
- управления расходом теплоносителя через теплообменник в системах отопления и ГВС ЖКХ, в тепловых насосах,
- пастеризаторах пищевых продуктов и т.п.;
- управления расходом хладагента в холодильных машинах и кондиционерах;
- управления пламенем горелки в печах, бойлерах, системах производства CO2 и т.д.;
- смешивания холодной и горячей воды.
II. При необходимости поддержания заданной влажности:
- управление подачей пара для варочных шкафов для мясоперерабатывающей промышленности.
III. При необходимости поддержания заданного давления:
- управление перепадом давления на фильтрах в пищевых и химических процессах;
- поддержание заданного давления в емкости с газированным напитком перед установкой розлива;
IV. При необходимости обеспечения заданной концентрации путем:
- управления подачей материала в емкость смешивания\разведения;
V. При необходимости обеспечение равномерной массовой подачи материала:
- управлением подачей сыпучего материала из накопительного бункера на подающий конвейер\шнек.
Особенности управления клапанами и задвижками (МЭО)
Примеры общего вида клапанов и задвижек
При управлении клапаном важно определится с типом управляющего сигнала и наличием обратной связи с клапана по его положению.
Наиболее распространёнными типами сигналов для управления клапанами являются: аналоговые (0..10 В, 0\4..20 мА) и релейные дискретные (2 сигнала: открыть\больше и закрыть\меньше). Удобством аналогово управления является прямая зависимость открытия клапана от сигнала задания, тогда как при управлении дискретными сигналами регулятор\контроллер производит расчет процента открытия исходя из данных о времени подачи дискретных сигналов и времени полного открытия клапана. Так же клапаны с аналоговым управлением сигналом могут закрывать при пропадании сигнала, то очень важно в ряде процессов. Но не смотря на плюсы аналогового управления, клапаны и задвижки (МЭО) с дискретным управлением остаются ощутимо дешевле, что сказывается на их распространенности.
Читайте также: Эндопротезирование аортального клапана что это
Видео:Управление электромагнитным клапаном 2. Высокое давлениеСкачать
Варианты управления положением: дискретными сигналами или аналоговым сигналом
Для повышения точности управления открытием часто используется обратная связь по положению с сигналам 0\4..20 мА или, в более бюджетном варианте, потенциометрическим сигналом в диапазоне от 100 до 10 000 Ом.
Контроллер-регулятор KX6 с обратной связью по положению клапана
Для управления клапанами используется алгоритмы на основе классического ПИД регулятора, дополненные рядом важных функций:
В первую очередь используемый ПИД алгоритм должен обладать защитой от насыщения интегратора, возникающего в классическом алгоритме при длительном выходе на заданную величину с максимальным выходным управляющем сигналом и приводящему к существенному перерегулированию.
Во-вторых, интегратор должен быть защищен от проблемы «холостого хода» связанного с конечной точностью цифро-аналогово преобразователя управляющего сигнала, и может приводить к статической ошибке.
В-третьих, алгоритм должен обеспечивать плавный переходный режим между ручным управление (прямым заданием открытия) к автоматическому.
Данные моменты в более общей форме рассмотрены в книгах «Системы управления с ЭВМ» (Глава 8) К. Острём, Б. Виттенрмарк (K. Åström. B. Wittenmark) и «Цифровые системы автоматизации и управления» (Глава 6) Г. Олсон, Дж. Пиани.
Наличие качественного алгоритма автонастройки параметров ПИД существенно ускоряет ввод системы в эксплуатацию и обеспечивает длительную работу системы с нужной точностью без обслуживания.
Рассмотрим модели регуляторов ASCON TECNOLOGIC серии KUBE которые могут быть использованы для управления клапанами.
Компания ASCON TECNOLOGIC (образована объединением компаний ASCON и TECNOLOGIC) выпускает приборы для управления клапанами с 80-х годов прошлого века: начав с серии XM и продолжив с сериями XP в 90-х, с X3, X5, Q3, Q5 в 2000-х и линейкой регуляторов KUBE (K_3, K_5P, KX6).
Линейка регуляторов для управления клапанами серии KUBE
Для управления клапанами и задвижками без обратной связи можно выбрать из трех серий K_3, KRD3 и K_5P. Регуляторы KRD3 являются версией K_3 без индикации для монтажа внутри шкафов управления на DIN-рейку. Управлением KRD3 осуществляется через RS485 по протоколу Modbus RTU. Единственное отличие серии K_5P от K_3 состоит в возможности задания много сегментной (до 96 сегментов) программы изменения технологической величины (например, температуры) от времени, поэтому далее мы рассмотрим только серию K_3.
Варианты исполнения контроллеров-регуляторов KUBE
Видео:Соленоидные электромагнитные клапаны. Принцип работы, виды.Скачать
В серии K_3 регуляторы представлены в четырех видах исполнения корпуса: три в панельном исполнении формата 78×35 – KR3, 48х48 – KM3, 48х96 – KX3 и один для монтажа на DIN-рейку в шкафах KRD3.
В независимости от исполнения корпуса все модели имеют универсальный аналоговый вход (J, K, R, S, T, PT100, PT100, мВ, мА, В) или (J, K, R, S, T, NTC, PTC, мВ, мА, В), 1 дискретный вход для переключения режимов работы регулятора и 1 конфигурируемый вход\выход, так же он может быть использован для питания датчиков с преобразователями 4..20 мА.
Экраны регуляторов высококонтрастные цветные. На экране отображаются две величины: измеренное значение (три цвета на выбор для отображения) и вторая величина, по умолчанию задание в автоматическом режиме работы. У моделей с KX3 так же есть дополнительная полоса (горизонтальный барограф), по умолчанию настроенный на отображение выходной величины регулятора\ расчетного открытия клапана.
Диаграмма поясняющая логику изменения цвета экрана KUBE
В зависимости от конфигурации предусмотрено два типа (L и H) питания регуляторов 24 В
Три дополнительных выхода могут следующих типов:
- 1 выход: I =0\2..10 В, 0\4. 20 mA, R = Реле SPST 4 A, O = транзистор для управления ТТР;
- 2 выход: — = отсутствует, R = Реле SPST 2 A, O = транзистор для управления ТТР, M= Реле управления клапаном 2 A;
- 3 выход: — = отсутствует, R = Реле SPST 2 A, O = транзистор для управления ТТР, M= Реле управления клапаном 2 A.
Для связи с верхним уровнем (ПЛК, панелями оператора, SCADA) регуляторы могут быть оснащены интерфейсами RS485 с протоколом Modbus RTU и Ethernet (шлюз AET1) с протоколом Modbus TCP.
Наиболее популярными моделями в России являются:
- «KM3-HRMMD—E—« («KM3-HRMMDS—E—» c RS485) корпус 48х48х73, питание 220 В
, управление клапаном дискретными сигналами, 1 релейный выход для сигнализации по выбранной аварии или группе аварий и событий.
«KM3-HIRRD—E—« («KM3-HIRRDS—E—» c RS485) корпус 48х48х73, питание 220 В
, управление клапаном аналоговым сигналом 0\2..10 В или 0\4. 20 mA , 2 релейных выхода для сигнализации или управления, например включения подачи жидкости для охлаждения.
«KM3-HIMMDS—E—« корпус 48х48х73, питание 220 В
, RS485, аналоговый выход для передачи измеренного сигнала, вычисленной ошибки между заданием и измерением и т.п. на другой контроллер\регулятор или самописец, управление клапаном дискретными сигналами.
«KX3-HIRRD—E—« («KХ3-HIRRDS—E—«c RS485) корпус 48х96х86, питание 220 В
Управление клапанами с обратной связью по положению
Наиболее популярными моделями в России являются:
Видео:Система Multiair - принцип работы и НЕДОСТАТКИ (Гидравлическое управление клапана)Скачать
- «KX6-HBMMRRC—E—-« корпус 48х96, 1 вх. термопары K (ТХА), J (ТЖК), T (ТМКн), R (ТПП13), S (ТПП10), 0/4… 20мA, 1 вх. потенциометра (100 Ом..10 кОм), управление сервоприводом клапана Больше\Меньше, 2 дискр. вх., 2 релейных выхода, питание, RS485 (ModBus RTU), 100-240 В
Читайте также: Клапан холостого хода ваз ларгус
«KX6-HBMMRRC—E—-» на пульте управления газовой печью
- «KX6-HBI-RRC—E—-« корпус 48х96, 1 вх. термопары K (ТХА), J (ТЖК), T (ТМКн), R (ТПП13), S (ТПП10), 0/4… 20мA,1 вх. потенциометра (100 Ом..10 кОм), выход управления OUT1 0/4… 20 мA , 0/2… 10 В, 2 дискр. вх., 2 релейных выхода, питание, RS485 (ModBus RTU), 100-240 В
Программные особенности KUBE
Регуляторы KUBE работают в трех режимах: автоматическом, ручном и ожидания. Переключение между режимами возможно: через параметры, по кнопке (расположенной у левого края пульта регулятора), по дискретному сигналу.
В автоматическом режиме регулятор работает в режиме стандартного управления с замкнутым контуром. При этом в верхней строке экрана отображается измеренное значение, в нижней строке экрана отображается заданное значение (если не выбрано другое в параметрах), десятичная цифра менее значимой цифры нижнего дисплея выключена.
В ручном режиме у регулятора контур управления выключен, выход управления может быть: равен 0 или предустановленному значению, а также задан оператором при помощи кнопок на пульте. На экране включен индикатор MAN. При этом в верхней строке экрана отображается измеренное значение, в нижней строке экрана выходное задание.
В режиме ожидания регулятор работает как индикатор: в верхней строке экрана отображается измеренное значение, в нижней строке поочередно отображается значение задания и сообщение St.bY или od. Выходы управления выключены.
[57] Auto — Auto tune selection
В регуляторах KUBE предусмотрено три алгоритма автоматической настройки параметров ПИД:
1. EvoTune автонастройка разработана ASCON TECNOLOGIC (используется по умолчанию) подходит, если:
• Обеспечивает приемлемую точность с минимальным или отсутствующим перерегулированием;
• У вас данных о динамике и нелинейностях управляемого процесса;
• Вы не можете быть уверены в навыках конечного пользователя;
• Вы хотите автоматическую настройку независимо от условий выполнения (например, изменение заданного значения
во время выполнения настройки и т.п.)
2. Осциллирующая автонастройка – модификация алгоритма Ziegler-Nichols предложенная Åström-Hägglund в 1984
году для настройки регулятора с замкнутой обратной связью:
• Обеспечивает высокую точность поддержания: быстрая реакция на изменение задания и возмущения процесса;
• Наличие перерегулирования и тенденции к колебаниям, которые необходимо компенсировать параметром
[65] Fuoc;
• Может запускаться, даже если измеренное значение близко к заданию;
• Может использоваться, даже если задание близко к температуре окружающей среды.
3. Fast автонастройка подходит, если:
• Процесс очень медленный, но необходимо произвести автонастройку в течение короткого времени;
• Когда перерегулирование неприемлемо;
• Для многозонных нагревателей, где данный метод уменьшает ошибку, связанную с влияния соседних зон.
[65] Fuoc — Fuzzy overshoot control
Этот параметр уменьшает перерегулирование, обычно присутствующее при запуске регулятора или после изменения заданного значения, и оно будет активным только в этих двух случаях. Заданием параметра от 0,00 до 0,99 можно менять скорость выхода в момент подхода к заданной точке. При значении Fuoc = 1 эта функция отключена.
[8] oPE — Safety output value
Задание безопасной величины выходного сигнала в аварийных ситуациях.
Видео:Лекция 9. Принцип работы четырехходового клапанаСкачать
[69] rS — Manual reset (integral pre-load)
Этот параметр позволяет существенно уменьшить отклонения при «горячем» перезапуске для процессов с длительным установившимся режимом.
Когда ваш процесс устойчив, регулятор работает с постоянной выходной мощностью (например, 30%) и происходит короткое прерывание питания, процесс перезапускается с измеренным значением, близким к заданной точке, в то время как регулятор начинает работать с интегральной составляющей равной нулю. Что приведет к значительному отклонению от установившегося режима.
Задание данного параметра, равным средней выходной мощности (в нашем примере 30%), позволяет регулятору начать работу с выходной мощности, равной величине, которую он будет использовать в установившемся режиме (вместо нуля), и отклонение будет очень маленьким (теоретически равным нулю).
Для процессов с длительными периодами выхода на рабочий режим (часто осуществляемого вручную для уменьшения перерегулирования), предусмотрены два параметра характеризующих скорость (плавность) изменения задания для алгоритма управления:
[86] SP.u — Rate of rise for positive set point change (ramp up)
Коэффициент скорости изменения задания при изменении задания в положительную сторону.
[87] SP.d — Rate of rise for negative set point change (ramp down)
Коэффициент скорости изменения задания при изменении задания в отрицательную сторону.
Прошивка регулятора KX6 дополнена следующими полезными функциями:
[58] Pot — Potentiometer enabling
Обратная связь с клапана может использоваться, как только для отображения, так и для управления.
[60] PoSi — Valve position at start up
Возврат клапана в указанное положение (открыт или закрыт) при включении питания при работе без обратной связи.
[59] P.cAL — Automatic Potentiometer Calibration
Функции автоматической калибровки обратной связи и определения реального времени движения для повышения качества управления и диагностики.
KX6 последовательность калибровки потенциометра
Аварии и тревоги
Надеемся, что приведенная информация окажется полезной.
Офис/склад: 111024, г. Москва, ул. Авиамоторная, дом 59. Доставка оборудования по России транспортными компаниями.
- Режим работы
- Время работы офиса:
пн-чт с 9.30 до 17.30, пт с 9.30 до 16.30 Время работы склада:
пн-чт с 10.00 до 17.00, пт с 10.00 до 16.00 - Перерыв на обед
с 13.15 до 14.00
📸 Видео
Clack V1CIDME (5 кнопок) - настройка и программирование своими рукамиСкачать
Обзор И Сборка Пневмооборудования Для Станков.Скачать
разбор ошибок монтажа клапанов для автополиваСкачать
Инструкции по настройки клапана управления RunxinСкачать
Уроки Ардуино #9 - управление нагрузкой MOSFET транзисторСкачать
Клапан ручного управления колонной RUNXIN TM.F56A.1, 4,5 куб/час. Режимы ручного клапана управленияСкачать
Рабочее давление соленоидного клапана // Клапан прямого действияСкачать
Настройка отображения состояния и управление клапаном (С2000-СП4) с С2000-БКИСкачать
Только не говори никому.. Как легко можно восстановить жидкокристаллический экран..Скачать
Настройка предохранительного клапана на гидрораспределителях Р40 и Р80. Регулировка давления на Р40.Скачать
Не работает Клапан управления турбиной! Что будет с турбой?!Скачать
Клапан Clack оживляем плату управления. Сбрасываем Ошибки ErorrСкачать
Электромагнитный клапан для пневматикиСкачать
Автоматика RUNXIN F63 B3 исправляем КОСЯКИ монтажниковСкачать
Настройка клапана управления RunxinСкачать