Введите значения в желтые поля — другие отсчитывает себя.
При изменении информации в полях, отмеченные автоматически пересчитывается.
В качестве десятичной запятой можно использовать как запятую, так и точку.
Результат выводится в тех-же единицах, что и вводите данные.
Например если ввели в дециметрах, то и результат будет в них-же.
Обнаруженны NaN, проверьте, что вы ввели в поле
корректные данные, то есть без букв и других символов.
- Формулы
- Цилиндр и призмы
- Принцип расчета
- Расчет цилиндра онлайн
- Диаметр и высота цилиндра
- Свойства
- Нахождение площади поверхности цилиндра: формула и задачи
- Формула вычисления площади цилиндра
- 1. Боковая поверхность
- 2. Основание
- 3. Полная площадь
- Примеры задач
- Формулы периметра
- Нахождение радиуса цилиндра: формула и примеры
- Формулы вычисления радиуса цилиндра
- 1. Через объем и высоту
- 2. Через площадь боковой поверхности
- 3. Через полную площадь поверхности
- Примеры задач
- 📽️ Видео
Формулы
Диаметр | d = | 2 r | [m] |
Окружность цилиндра | O = | π d = 2 π r | [m] |
Площадь одной базы | P = | π d²/4 = π r² | [m²] |
Поверхность цилиндра | Q = | π d h = 2 π r h | [m²] |
Общая площадь | S = | 2 P + Q = 2 π r (r + h) | [m²] |
Объем | V = | π d²/4 h = π r² h | [m³] |
S … центр базовые цилиндра
Цилиндр и призмы
Принцип расчета
Общая площадь цилиндра состоит из поверхностей как основания и кожуха цилиндра. Оболочка цилиндра является произведением высоты и окружности цилиндра
Расчет объема/контента просто. о-первых, рассчитывать количество области цилиндра (то есть площадь круга), а затем умножив высоту.
Расчет цилиндра онлайн
Калькулятор окружности цилиндра или вычисление площади или поверхности цилиндра, содержание или объем цилиндра, узор валков площадь или длина окружности оболочки или содержимого. Расчет объема войны онлайн. Формула для вычисления цилиндра.
Видео:60. Площадь поверхности цилиндраСкачать
Диаметр и высота цилиндра
Видео:Цилиндр - расчёт площади, объёма.Скачать
Свойства
Через диаметр цилиндра можно рассчитать его радиус и периметр основания цилиндра. Радиус будет равен половине диаметра, а периметр – его произведению на число π. r=D/2 P=πD
Зная диаметр и высоту цилиндра, можно узнать площадь, объем, диагональ цилиндра и остальные параметры. Площадь боковой поверхности цилиндра представляет собой площадь прямоугольника, сторонами которого являются периметр основания цилиндра и его высота. Чтобы затем найти площадь полной поверхности цилиндра через диаметр и высоту, нужно к площади боковой поверхности добавить площадь верхнего и нижнего оснований, каждое из которых равно произведению числа π на четверть квадрата диаметра. S_(б.п.)=hP=πDh S_(п.п.)=S_(б.п.)+2S_(осн.)=πDh+(πD^2)/2=πD/2(2h+D) P=πD
Читайте также: Расположение цилиндров мерседес v8 222
Объем цилиндра представляет собой площадь его основания, умноженную на высоту. Чтобы найти объем цилиндра через диаметр и высоту, нужно умножить квадрат диаметра на четверть числа π и на высоту. V=(πD^2 h)/4 P=πD
Диагональ цилиндра находится из прямоугольного треугольника, в котором она является гипотенузой, а катеты представлены высотой и диаметром цилиндра. По теореме Пифагора диагональ цилиндра через высоту и диаметр цилиндра равна квадратному корню из суммы их квадратов. (рис. 25.1) d=√(h^2+D^2 ) P=πD
Чтобы найти радиус сферы вписанной в цилиндр, если его диаметр равен высоте, нужно разделить диаметр цилиндра либо высоту на два, так как радиус вписанной сферы равен радиусу цилиндра. (рис.25.2) r_1=h/2=D/2 P=πD
Радиус сферы, описанной вокруг цилиндра, при соблюдении тех же условий (равенство диаметра цилиндра и его высоты) равен половине диагонали цилиндра.(рис.25.3) R=d/2=√(h^2+D^2 )/2
Видео:Видеоурок по математике "Цилиндр"Скачать
Нахождение площади поверхности цилиндра: формула и задачи
В данной публикации мы рассмотрим, как можно найти площадь поверхности цилиндра и разберем примеры решения задач для закрепления материала.
Видео:Длина окружности. Математика 6 класс.Скачать
Формула вычисления площади цилиндра
1. Боковая поверхность
Площадь (S) боковой поверхности цилиндра равна произведению длины окружности, являющейся основанием фигуры, на его высоту.
Длина окружности, в свою очередь, рассчитывается так: C = 2 π R. Следовательно, рассчитать площадь можно следующим образом:
Примечание: в вычислениях значение числа π округляется до 3,14.
2. Основание
В качестве оснований цилиндра (равны между собой), выступает круг, площадь которого равна:
Т.к. диаметр круга равен двум его радиусам (d = 2R), выражение можно преобразовать таким образом:
3. Полная площадь
Для нахождения данной величины необходимо просуммировать площади боковой поверхности и двух равных оснований цилиндра, т.е.:
S = 2 π R h + 2 π R 2 или S = 2 π R (h + R)
Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать
Примеры задач
Задание 1
Найдите площадь боковой поверхности цилиндра, если его радиус равен 11 см, а высота – 8 см.
Решение:
Воспользуемся первой формулой, подставив в нее данные по условиям задачи значения:
S = 2 ⋅ 3,14 ⋅ 11 см ⋅ 8 см = 552,64 см 2 .
Задание 2
Высота цилиндра равна 9 см, а его диаметр – 8 см. Найдите суммарную площадь поверхности фигуры.
Решение:
Если диаметр цилиндра равен 8 см, значит его радиус составляет 4 см (8 см / 2). Применив соответствующую формулу для нахождения площади получаем:
S = 2 ⋅ 3,14 ⋅ 4 см ⋅ (9 см + 4 см) = 326,56 см 2 .
Читайте также: Если цилиндров в моче ноль
Видео:11 класс, 15 урок, Площадь поверхности цилиндраСкачать
Формулы периметра
Формула объема тетраэдра
Формула объема шара
Формулы объема цилиндра
1) Объем цилиндра равен произведению площади основания на высоту.
2) Объем цилиндра равен произведению числа пи (3.1415) на квадрат радиуса основания на высоту.
V — объем цилиндра
S — площадь основания цилиндра
h — высота цилиндра
π — число пи (3.1415)
r — радиус цилиндра
См. также: Программа для расчета объема цилиндра.
1) Объем шара вычисляется по приведенной ниже формуле.
V — объем шара
π — число пи (3.1415)
R — радиус шара
См. также: Программа для расчета объема шара.
1) Объем тетраэдра равен дроби в числителе которой корень квадратный из двух помноженный на куб длины ребра тетраэдра, а в знаменателе двенадцать.
V — объем тетраэдра
a — длина ребра тетраэдра
См. также: Программа для расчета объема тетраэдра.
Периметр геометрической фигуры — суммарная длина границ плоской геометрической фигуры. Периметр имеет ту же размерность величин, что и длина.
Формула периметра круга (длины окружности):
1) Периметр круга равен произведению радиуса на два пи (3.1415).
P — Периметр круга (длина окружности)
π — число пи (3.1415)
r — радиус круга (окружности)
См. также: Программа для расчета периметра круга (длины окружности).
Формула периметра треугольника:
1) Периметр треугольника равен сумме 3-ех его сторон (a, b, c).
P — периметр треугольника
a, b, c — длины сторон треугольника
См. также: Программа для расчета периметра треугольника.
Формула периметра прямоугольника:
1) Периметр прямоугольника равен удвоенной сумме 2-х его смежных сторон (a, b).
P — периметр прямоугольника
a — длина 1-ой стороны прямоугольника
b — длина 2-ой стороны прямоугольника
См. также: Программа для расчета периметра прямоугольника.
Формулы периметра квадрата:
1) Периметр квадрата равен сумме 4-х длин его сторон или произведению длины любой его стороны на четыре (так как у квадрат длины всех сторон равны).
2) Периметр квадрата равен произведению длины его диагонали на два корня из двух.
P — периметр квадрата
a — длина стороны квадрата
d — длина диагонали квадрата
См. также: Программа для расчета периметра квадрата.
Формула периметра трапеции:
1) Периметр трапеции равен сумме 4-х её сторон (a, b, c, d).
P — периметр трапеции
a, c — длины оснований трапеции
b, d — длины боковых сторон трапеции
См. также: Программа для расчета периметра трапеции.
Читайте также: Как открутить тормозной цилиндр от суппорта ваз 2114
Формула периметра параллелограмма:
1) Периметр параллелограмма равен удвоенной сумме 2-х его смежных сторон (a, b).
P — периметр параллелограмма
a — длина 1-ой стороны параллелограмма
b — длина 2-ой стороны параллелограмма
См. также: Программа для расчета периметра параллелограмма.
Формула периметра ромба:
1) Периметр ромба равен сумме 4-х длин его сторон или произведению длины любой его стороны на четыре (так как у ромба длины всех сторон равны).
P — периметр ромба
a — длина стороны ромба
См. также: Программа для расчета периметра ромба.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Видео:11 класс. Геометрия. Объем цилиндраСкачать
Нахождение радиуса цилиндра: формула и примеры
В данной публикации мы рассмотрим, как можно вычислить радиус цилиндра и разберем примеры решения задач для закрепления материала.
Видео:Длина окружности. Площадь круга. 6 класс.Скачать
Формулы вычисления радиуса цилиндра
1. Через объем и высоту
Радиус цилиндра рассчитывается по формуле:
V – объем цилиндра; считается как произведение числа π на высоту фигуры на квадрат радиуса круга, являющего ее основанием.
- R – радиус основания цилиндра, т.е. окружности;
- π – число, округленное значение которого равняется 3,14.
2. Через площадь боковой поверхности
Радиус цилиндра считается таким образом:
Sбок. – площадь боковой поверхности цилиндра; равна произведению длины окружности (2 π R), являющейся основанием фигуры, на его высоту:
3. Через полную площадь поверхности
Данная формула получена следующим образом:
S – полная площадь поверхности фигуры, равная:
S = 2 π Rh + 2 π R 2 или S = 2 π R(h + R)
Возьмем первое выражение. Если перенести S в правую часть, получим:
2 π R 2 + 2 π Rh – S = 0
Можно заметить, что это квадратное уравнение вида ax 2 + bx + c = 0, где:
R является корнем данного уравнения (x). Подставив в стандартную формулу для расчета корней наши значения a, b и с получаем*:
* в нашем случае – только один положительный корень, т.к. радиус не может быть отрицательным.
Видео:Лучший способ найти площадь кругаСкачать
Примеры задач
Задание 1
Высота цилиндра равняется 5 см, а объем – 141,3 см 3 . Вычислите его радиус.
Решение:
Воспользуемся соответствующей формулой, подставив в нее известные по условиям задачи значения:
Задание 2
Найдите радиус цилиндра, если площадь его боковой поверхности равна 175,84 см 2 , а высота составляет 7 см.
Решение:
Применим формулу, в которой задействованы заданные величины:
Задание 3
Рассчитайте радиус цилиндра, если полная площадь его поверхности – 602,88 см 2 , а высота – 10 см.
Решение:
Используем третью формулу для нахождения неизвестной величины:
📽️ Видео
Длина окружности. Площадь круга - математика 6 классСкачать
Миникурс по геометрии. Куб, призма, цилиндр и конусСкачать
11 класс, 32 урок, Объем цилиндраСкачать
ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРАСкачать
Объем цилиндраСкачать
Объем цилиндра.Скачать
+Как найти длину окружностиСкачать
Объем цилиндра.Скачать
Объем цилиндра. Практическая часть. 11 класс.Скачать
Нахождение площади боковой поверхности цилиндраСкачать
ЕГЭ. Задача 8. Призма и цилиндрСкачать