Как построить линию пересечения конуса вращения с цилиндром вращения

Как построить линию пересечения конуса вращения с цилиндром вращения

Авто помощник

Пересечение конуса и цилиндра имеют сопряжение осевых линий, поэтому вычерчивание осуществлено метод секущих сфер.

Ниже представлено задание на эту тему:

Как построить линию пересечения конуса вращения с цилиндром вращения

Рассмотрим Пересечение конуса и цилиндра пошагово:

1.) Вычерчиваются фигуры в первоначальном виде согласно заданию.

Как построить линию пересечения конуса вращения с цилиндром вращения

2.) Строится первая секущая сфера с наименьшим радиусом (определяется по наибольшей ширине из двух фигур по углом 90 градусов)

Как построить линию пересечения конуса вращения с цилиндром вращения

3.) Окружность (имеет синий цвет) пересекла обе фигуры в двух точках. Необходимо соединить точки, тем самым образуются прямые, которые пересекаются в точках — это и есть необходимая точка для дальнейшего построения линии пересечения фигур.

Как построить линию пересечения конуса вращения с цилиндром вращения

4.) Чертится еще дополнительная окружность (обозначено сиреневым цветом), пересекающая конус в двух точках (их необходимо соединяют) и цилиндр в четырех точках (их тоже соединяют). В месте пересечения прямых конуса и цилиндра ставим точки.

Радиусы окружностей произвольные, кроме первоначального. Чем больше окружностей, тем точнее выглядит линия пересечения.

Как построить линию пересечения конуса вращения с цилиндром вращения

5.) Чертится дополнительная окружность (зеленым цветом), которая пересекает конус в двух точках и цилиндр. Точки соединяются и в месте сопряжения указывается необходимая точка.

Как построить линию пересечения конуса вращения с цилиндром вращения

6.) Следующим необходимо перенести точки в верхнем изображении в нижний. Для этого строится окружность в нижним изображении (синим цветом) и опускаются прямые до сопряжения с окружностью.

Как построить линию пересечения конуса вращения с цилиндром вращения

7.) Повторяется процесс перенос точек выполненный в 6 пункте, но теперь с сиреневым цветом.

Как построить линию пересечения конуса вращения с цилиндром вращения

8.) Повторяется процесс переноса точек описанный в 6 пункте (зеленым цветом).

Как построить линию пересечения конуса вращения с цилиндром вращения

9.) Переносятся последние точки, имеющие сопряжения в самых крайних точках сопряжения фигур: в верхней и нижней частях.

Как построить линию пересечения конуса вращения с цилиндром вращения

10.) Соединяются все точки плавной линией, образуя необходимую линию взаимно пересекающих фигур.

Как построить линию пересечения конуса вращения с цилиндром вращения

11.) Завершающим шагом является удаление всех дополнительных с последующей обводкой контуров соответствующими линиями чертежа.

Как построить линию пересечения конуса вращения с цилиндром вращения

Независимо от задания, получаемое от преподавателя, на выполнение подобного рода чертежа, то есть на пересечение конуса и цилиндра. Метод выполнения остается неизменным.

Видео:Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)Скачать

Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)

Построить линию пересечения конуса вращения с цилиндром вращения. Оси поверхностей вращения — взаимно перпендикулярные проецирующие скрещивающиеся прямые.

Данные для своего варианта взять из таблицы 6.

Пример выполнения задачи приведен на рисунке 7.

Работу выполнять на листе формата A3 совместно с задачей 6 или отдельно на формате А4.

Указания к решению задачи 7.

Намечаются оси координат. Из таблицы 6 берут согласно своему варианту величины, которыми задаются поверхности конуса вращения и цилиндра вращения.

Определяют положение центра (точка к) основания конуса и на горизонтальной плоскости проекций проводят окружность радиуса R. На фронтальной плоскости проекций на расстоянии h от точки К обозначают вершину конуса, и соединяют ее прямыми линиями с крайними точками основания.

Аналогично строят проекции цилиндра. Определяют положение центра цилиндра (точка Е). На фронтальной плоскости проекций радиусом R1 чертят фронтальную проекцию цилиндра. На горизонтальную плоскость цилиндр проецируется в виде прямоугольника со сторонами, равными 2R и ЗR, расположенными симметрично относительно осей цилиндра.

После анализа условий задачи и взаимного расположения поверхностей определяют, характерные точки на линии пересечения. В данном цилиндре это точки 1, 2, 3, 4, 5, и 6. Точка 1 крайняя верхняя, точка 5 крайняя нижняя, точка 3 крайняя левая, точка 6 крайняя правая.

Положение горизонтальных проекций точек 1, 5 и 6 определяется сразу. Для определения горизонтальных проекций точек 2, 3 и 4, а также других промежуточных точек лини пересечения используется метод посредников. Через интересующие точки проводят вспомогательные секущие плоскости, определяют линии пересечения их с поверхностями и в местах пересечения линии пересечения между собой определяются проекции искомых точек.

По этим точкам строят линию пересечения поверхности конуса вращения с цилиндром вращения и устанавливают ее видимо в проекциях.

Все основные вспомогательные построения на эпюре сохранить и показать тонкими сплошными линиями.

Таблица 6. Данные к задаче №7 (координаты и размеры, мм)

Видео:Построить линию пересечения конуса вращения с цилиндром вращения ч.1Скачать

Построить линию пересечения конуса вращения с цилиндром вращения ч.1

Задача: Построить линию пересечения конуса с цилиндром

Контрольная работа 3

ПРОЕЦИРОВАНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ПОВЕРХНОСТЕЙ ВРАЩЕНИЯ

Задача: Построить линию пересечения конуса с цилиндром

В первой задаче одна из проекций линии пересечения (профильная) совпадает с вырожденной проекцией цилиндра, две другие ее проекции можно найти при помощи графически простых линий конуса вращения. Без каких –либо дополнительных построений можно определить опорные точки А и В, расположенные на профильных очерковых образующих конуса, и точки С, С 1 , D и D 1 , расположенные на фронтальных очерковых образующих конуса

Последовательность построения соответствующих проекций точек линии пересечения показана стрелками на чертеже. Точка А одновременно является самой высокой точкой,

Для построения точек М и N, расположенных на горизонтальной очерковой образующей цилиндра, являющихся точками видимости горизонтальной проекции линии пересечения, проводим вспомогательную секущую плоскость Г, проходящую через горизонтальные очерковые образующие цилиндра. Эта плоскость пересекает цилиндр по горизонтальным очерковым образующим, а конус – по окружности, радиус R которой равен расстоянию от оси конуса до профильной очерковой образующей конуса O к 3К3. Точки пересечения этих пиний дают искомые точки M u N. По горизонтальным проекциям найденных точек с помощью линий связи строят фронтальные проекции.

Как построить линию пересечения конуса вращения с цилиндром вращения

Для построения точек Е и L, принадлежащих фронтальной очерковой образующей цилиндра, являющихся точками видимости для фронтальной проекции линии пересечения, проводим вспомогательную секущую плоскость Г 1 . Эта плоскость касается цилиндра по нижней фронтальной очерковой образующей, а конус пересекает по окружности, радиус которой R1 равен расстоянию O3 1к К 3 . Точки пересечения этих линий определяют искомые точки Е и L.

Для построения случайных точек проводятся вспомогательные горизонтальные плоскости уровня, которые пересекают цилиндр по образующим, а конус — по окружностям. Например, проведем вспомога­тельную секущую плоскость Г 2 . Эта плоскость пересекает цилиндр по образующим а и б. На профильную плоскость проекций эти образующие проецируются в точки, расположенные на окружности, являющейся профильной проекцией цилиндрической поверхности.Горизонтальные проекции образующих а и б расположены от оси цилиндра на расстоя­нии, равном отрезку а3 О3 к2 . Конус плоскость Г 2 пересекает по окружности, радиус R, которой измеряется отрезком O3 к2 К3 2 . Точки пересечения этой окружности с образующей а (точки I и 2) принадлежат линии пересечения.

Аналогичные построения повторяют столько раз, сколько необходимо точек для построения линии пересечения.

Читайте также: Цилиндр 1935 год мюзикл

Затем полученные точки соединяют плавной кривой пинией в оп­ределенной последовательности с учетом видимости кривой. Фронталь­ная проекция линии пересечения видима от точки В до точек Е и L. Го­ризонтальная проекция видима от точки А до точек M u N. Последним этапом решения данной задачи является определение видимости очерков поверхностей относительно друг друга.

Возможный вариант в зависимости от варианта задания

Как построить линию пересечения конуса вращения с цилиндром вращения

Во второй задаче способ вспомогательных сфер с постоянным центром. Центром для вспомогательных сфер служит точка О, фронтальная проекция 0″ которой находится в точке пересечения осей конической и цилиндрической поверхностей. Строится первая секущая плоскость с наименьшим радиусом определяется по наибольшей ширине из двух фигур под углом 90 градусов)

Вписанная в коническую поверхность сфера (Сф.1) дает возможность получить положение действительной оси, центр и вершины гиперболы. Асимптоты получены как диагонали трапеции 5″6″ и 7″8″, в которой стороны 5″б» и 7″ 8″ параллельны образующей цилиндра и касаются окружности «Сф.1».

Как построить линию пересечения конуса вращения с цилиндром вращения

Чертится еще дополнительная окружность, пересекающая конус в четырех точках (их тоже соединяют). В месте пересечения конуса и цилиндра ставится точка.

Радиусы окружностей произвольные, кроме первоначального. Чем больше окружностей, тем точнее выглядит линия пересечения. Чертится дополнительная окружность, которая пересекает конус в двух точках и цилиндр. Точки соединяются и в месте сопряжения указывается необходимая точка.

Далее необходимо перенести точки с фронтальной проекций в горизонтальную. Для этого строится окружность в горизонтальном изображении и опускаются прямые до сопряжения с окружностью.

Соединяются все точки плавной линией образуя необходимую линию взаимно пересекающихся фигур

Как построить линию пересечения конуса вращения с цилиндром вращения

Соединяются все точки плавной линией, образуя необходимую линию взаимно пересекающихся фигур.

Как построить линию пересечения конуса вращения с цилиндром вращения

Задание:Построить линию пересечения прямого кругового конуса с горизонтальным цилиндром. Диаметр основания конуса 80 мм, высота 80 мм. Диаметр основания цилиндра 40 мм, длина 100 мм. Взаимное расположение конуса и цилиндра принять в соответствии с рисунком.

Как построить линию пересечения конуса вращения с цилиндром вращения

В задании возможные варианты пересечения конуса с цилиндром

Видео:Построение линии пересечения конуса вращения с цилиндром вращения. Анимация.Скачать

Построение линии пересечения конуса вращения с цилиндром вращения. Анимация.

Лекция 7. Поверхности

Видео:Построение линии пересечения поверхности конуса с проецирующей плоскостьюСкачать

Построение линии пересечения поверхности конуса с проецирующей плоскостью

7.1. Поверхности. Образование и задание поверхности на чертеже

Поверхности составляют широкое многообразие объектов трехмерного пространства. Инженерная деятельность человека связана непосредственно с проектированием, конструированием и изготовлением различных поверхностей. Большинство задач прикладной геометрии сводится к автоматизации проектно-конструкторского процесса и воспроизведения сложных поверхностей. Способы формообразования и отображения поверхностей составляют основу инструментальной базы трехмерного моделирования современных систем автоматизированного проектирования.

Рассматривая поверхности как непрерывное множество точек, между координатами которых может быть установлена зависимость, определяемая уравнением вида F(x,y,z)=0, можно выделить алгебраические поверхности (F(x,y,z)— многочлен n-ой степени и трансцендентные (F(x,y,z)— трансцендентная функция.

Если алгебраическая поверхность описывается уравнением n-й степени, то поверхность считается поверхностью n-го порядка. Произвольно расположенная секущая плоскость пересекает поверхность по кривой того же порядка (иногда распадающейся или мнимой), какой имеет исследуемая поверхность. Порядок поверхности может быть определен также числом точек её пересечения с произвольной прямой, не принадлежащей целиком поверхности, считая все точки (действительные и мнимые).

Поверхность можно рассматривать, как совокупность последовательных положений l1,l2 линии l перемещающейся в пространстве по определенному закону (Рисунок 7.1). В процессе образования поверхности линия l может оставаться неизменной или менять свою форму — изгибаться или деформироваться. Для наглядности изображения поверхности на эпюре Монжа закон перемещения линии l целесообразно задавать графически в виде одной линии или целого семейства линий (m, n, p…).

Подвижную линию принято называть образующей (li), неподвижные – направляющими (m). Такой способ образования поверхности принято называть кинематическим .

Примером такого способа могут служить все технологические процессы обработки металлов режущей кромкой, когда поверхность изделия несёт на себе «отпечаток» режущей кромки резца, т.е. её поверхность можно рассматривать как множество линий конгруэнтных профилю резца.

Как построить линию пересечения конуса вращения с цилиндром вращения

Рисунок 7.1 — Кинематическая поверхность

По виду образующей различают поверхности линейчатые и нелинейчатые , образующая первых – прямая линия, вторых – кривая.

Линейчатые поверхности в свою очередь разделяют на развертывающиеся , которые можно без складок и разрывов развернуть на плоскость и неразвертывающиеся .

Значительный класс поверхностей формируется движением окружности постоянного или переменного радиуса. Такие поверхности носят название циклические (Рисунок 7.2).

Как построить линию пересечения конуса вращения с цилиндром вращения

Рисунок 7.2 — Циклическая поверхность

Если группировать поверхности по закону движения образующей линии, то большинство встречающихся в технике поверхностей можно разделить на:

  • поверхности вращения;
  • винтовые поверхности;
  • поверхности с плоскостью параллелизма;
  • поверхности параллельного переноса.

Особое место занимают такие нелинейные поверхности, образование которых, не подчинено ни какому закону. Оптимальную форму таких поверхностей определяют теми физическими условиями, в которых они работают и устанавливают форму экспериментально (поверхности лопастей турбин, обшивка каркасов морских судов и самолетов).

Для графического изображения поверхности на чертеже используется её каркас.

Множество линий, заполняющих поверхность так, что через каждую точку поверхности проходит в общем случае одна линия этого множества, называется каркасом поверхности .

Поверхность может быть задана и конечным множеством точек, которое принято называть точечным каркасом .

Проекции каркаса могут быть построены, если задан определитель поверхности – совокупность условий, задающих поверхность в пространстве и на чертеже.

Различают две части определителя: геометрическую и алгоритмическую.

Геометрическая часть определителя представляет собой набор постоянных геометрических элементов (точек, прямых, плоскостей и т.п.), которые могут и не входить в состав поверхности.

Вторая часть – алгоритмическая (описательная) – содержит перечень операций, позволяющий реализовать переход от фигуры постоянных элементов к непрерывному каркасу.

Например, циклическая поверхность, каркас которой состоит из восьмиугольников (Рисунок 7.3), может быть задан следующим образом:

  • Геометрическая часть определителя: три направляющих l, m, n.
  • Алгоритмическая часть: выбираем плоскость α; находим точки А, В, С, в которых α пересекает соответственно направляющие l, m, n. Строим восьмиугольник, определяемый тремя найденными точками. Переходим к следующей плоскости и повторяем построение

Как построить линию пересечения конуса вращения с цилиндром вращения

Рисунок 7.3 –Образование циклической поверхности

Видео:Построить линию пересечения конуса вращения с цилиндром вращения ч.2Скачать

Построить линию пересечения конуса вращения с цилиндром вращения ч.2

7.2. Поверхности вращения

Поверхностями вращения называются поверхности, полученные вращением образующей вокруг неподвижной оси (Рисунок 7.5).

Цилиндрическая и коническая поверхности бесконечны (т.к. бесконечны образующие); сферическая, торовая поверхности — конечны.

Сферическая поверхность – частный случай торовой поверхности. При вращении окружности вокруг осей б, в, г (Рисунок 7.4, а) получим торовую поверхность (Рисунок 7.4, б), а вокруг оси а – сферическую.

Как построить линию пересечения конуса вращения с цилиндром вращения

Рисунок 7.4 – Образование поверхностей вращения

Как построить линию пересечения конуса вращения с цилиндром вращения

Рисунок 7.5 – Элементы поверхности вращения

Каждая точка образующей линии при вращении вокруг оси описывает окружность, которая располагается в плоскости, перпендикулярной оси вращения. Эти окружности называются параллелями (Рисунок 7.5).

Наименьшая параллель называется горлом , наибольшая – экватором .

Линия пересечения поверхности вращения плоскостью, проходящей через ось, называется меридианом .

Линия пересечения поверхности вращения плоскостью, проходящая через ось, параллельно фронтальной плоскости проекций, называется главным меридианом .

Видео:Построить линию пересечения конуса вращения с цилиндром вращения ч.3Скачать

Построить линию пересечения конуса вращения с цилиндром вращения ч.3

7.3. Цилиндрическая поверхность

Цилиндрическая поверхность образуется движением прямой линии, которая в любом своём положении параллельна данному направлению и пересекает криволинейную направляющую (Рисунок 7.6).

Читайте также: Как прокачать цилиндр рохли

Цилиндр – геометрическое тело, ограниченное замкнутой цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими все образующие данной поверхности.

Взаимно параллельные плоские фигуры, ограниченные цилиндрической поверхностью, называются основаниями цилиндра .

Если нормальное сечение (плоскость сечения перпендикулярна образующим) имеет форму окружности, то цилиндрическая поверхность называется круговой .

Если образующие цилиндрической поверхности перпендикулярны к основаниям, то цилиндр называется прямым, в противном случае – наклонным .

Рассмотрим проецирование прямого кругового цилиндра и принадлежащей ему точки F.

Условимся, что фронтальная проекция точки F – невидима (Рисунок 7.6).

Как построить линию пересечения конуса вращения с цилиндром вращения

Рисунок 7.6 – Проецирование цилиндра на плоскости проекций

Горизонтальная и профильная проекции точки F будут видимы.

При определении видимости, образующие, которые находятся на части, обращённой к наблюдателю и обозначенной на π1 сплошной зелёной линией – на плоскости проекции π2 видны, а которые находятся на части, обозначенной толстой штриховой линией – видны на π3.

Пусть точка А на π2 видима (Рисунок 7.7). Тогда на π1 она будет видима, а на π3 невидима.

Как построить линию пересечения конуса вращения с цилиндром вращения

Рисунок 7.7 – Эпюр прямого кругового цилиндра и принадлежащих ему точек

Видео:Как построить ЛИНИЮ ПЕРЕСЕЧЕНИЯ двух ЦИЛИНДРОВСкачать

Как построить ЛИНИЮ ПЕРЕСЕЧЕНИЯ двух ЦИЛИНДРОВ

7.4. Пересечение прямой с поверхностью прямого кругового цилиндра

Для построения точек пересечения прямой линии с поверхностью прямого кругового цилиндра не требуется дополнительных построений. На горизонтальной плоскости проекций точки пересечения (1 и 2) находятся сразу. Фронтальные проекции строим по линиям связи.

Но в общем случае, алгоритм решения рассмотрим на следующем упражнении.

Как построить линию пересечения конуса вращения с цилиндром вращения

Рисунок 7.8 – Пересечение прямой с поверхностью прямого кругового цилиндра

Видео:Линия пересечения двух поверхностей вращения (Метод вспомогательных сфер)Скачать

Линия пересечения двух поверхностей вращения (Метод вспомогательных сфер)

Упражнение

Заданы: прямой круговой цилиндр с осью вращения, перпендикулярной плоскости проекций π1 и прямая а общего положения (Рисунок 7.8).

Построить точки пересечения прямой а с поверхностью цилиндра.

Для построения точек пересечения прямой с поверхностью цилиндра необходимо:

  1. Заключить прямую во вспомогательную секущую плоскость частного положения σ (горизонтально-проецирующую).
  2. Построить фигуру пересечения поверхности цилиндра горизонтально-проецирующей плоскостью: результат пересечения — четырехугольник (на π2 условно заштрихован).
  3. Найти точки «входа» и «выхода» прямой: на пересечении её фронтальной проекции с фронтальными проекциями сторон четырёхугольника (они же — проекции образующей цилиндра);

Прямая а пересекается со сторонами сечения в двух точках – 1 и 2.

Определим видимость участков прямой: очевидно, что между точками 1-2 прямая невидима, а на плоскости проекций π2 будет ещё невидим участок прямой от точки 1 до левой крайней образующей.

Видео:Построение точек встречи прямой с поверхностью конусаСкачать

Построение точек встречи прямой с поверхностью конуса

7.5. Пересечение прямой с поверхностью наклонного цилиндра

Видео:86КБ. Пересечение поверхностей вращения. Построить линию пересечения цилиндра и конуса.Скачать

86КБ. Пересечение поверхностей вращения. Построить линию пересечения цилиндра и конуса.

Упражнение

Заданы : наклонный круговой цилиндр с осью вращения, наклонной к плоскости проекций π1 и прямая mобщего положения (Рисунок 7.9).

Построить точки пересечения прямой mс поверхностью цилиндра.
Решение :

Для построения точек пересечения прямой с поверхностью цилиндра необходимо:

Как построить линию пересечения конуса вращения с цилиндром вращения

Рисунок 7.9 – Пересечение прямой с наклонным цилиндром

  1. Заключить прямую m во вспомогательную плоскость σ, дающую в сечении наиболее простую фигуру – четырехугольник (σ параллельна оси цилиндра или образующим). Эту плоскость зададим двумя пересекающимися прямыми m∩(1M);
  2. Построить горизонтальный след плоскости σ (прямую пересечения σ с плоскостью проекций π1) как проходящую через горизонтальные следы прямых m и (1M) (точки пересечения прямых с плоскостью проекций π1 (основания)) – (MN);
  3. Найти точки пересечения MN с окружностью основания цилиндра. Через эти точки провести образующие r, по которым плоскость σ пересекает боковую поверхность цилиндра:

На анимации ниже представлена последовательность построения точек пересечения прямой с наклонным цилиндром.

Видео:Пересечение конуса и цилиндраСкачать

Пересечение конуса и цилиндра

7.6. Сферическая поверхность

Сферическая поверхность – поверхность, образованная вращением окружности вокруг отрезка, являющегося её диаметром.

Шаром называется тело, ограниченное сферической поверхностью.

Экватор – это окружность, которая получается пересечением сферы горизонтальной плоскостью, проходящей через ее центр (Рисунок 7.10).

Меридиан – это окружность, которая получается пересечением сферы плоскостью, перпендикулярной плоскости экватора и проходящей через центр сферы.

Параллелями называются окружности, которые получаются пересечением сферы плоскостями, параллельными плоскости экватора.

Как построить линию пересечения конуса вращения с цилиндром вращения

Рисунок 7.10 – Проецирование сферической поверхности

Прямоугольная проекция шара (сферы) на любую плоскость – есть окружность, которую часто называют очерковой .

Как построить линию пересечения конуса вращения с цилиндром вращения

Рисунок 7.11 – Эпюр сферы и принадлежащих ей точек

Видео:2 6 1 сечение конуса плоскостьюСкачать

2 6 1 сечение конуса плоскостью

Упражнение

Заданы: сферическая поверхность тремя проекциями (Рисунок 7.11) и фронтальные проекции точек 1, 2, 3, 4.

Необходимо построить горизонтальные и профильные проекции заданных точек.

  • Проанализируем их расположение на поверхности сферы. Точки 1, 2, 3 лежат на очерковых образующих сферы.
  • Точка 1 принадлежит главному меридиану (очерковой окружности на π2), проекция которого на π1 совпадает с проекцией горизонтальной оси, на π3 – с проекцией вертикальной оси.
  • Недостающие проекции точки 1 находим посредством линий проекционной связи. Все проекции точки 1 видимы.
  • Рассмотрим положение точки 2. Точка 2 принадлежит экватору (очерковой окружности на π1), проекции которого на π2 и π3 совпадают с проекцией горизонтальной оси. Горизонтальная проекция точки 2 строится посредством линии проекционной связи, для построения профильной проекции необходимо измерить расстояние, отмеченное дугой, и отложить его по линии связи от точки О3 вправо. Профильная проекция точки 2 невидима.
  • Точка 3 принадлежит очерковой окружности на π3, которая также является меридианом, проекции которого на π2 и π1 совпадают с проекцией вертикальной оси. Профильная проекция точки строится посредством линии проекционной связи. Для построения горизонтальной проекции точки 3 необходимо расстояние, отмеченное на π3 двумя засечками, отложить на π1 вверх от точки О1. Горизонтальная и профильная проекции точки 3 видимы.
  • Для построения проекций точки 4 необходимо ввести вспомогательную секущую плоскость (зададим плоскость σ//π1 и σ⊥π2). Плоскость σ пересекает поверхность сферы по окружности радиусом r. На π1 строим данное сечение и по линии проекционной связи находим 41. Для построения профильной проекции необходимо расстояние, отмеченное засечкой, отложить по линии проекционной связи на π3 вправо от оси. Все проекции точки 4 видимы.

Видео:Начертательная геометрия. Пересечение прямых с поверхностями вращения. Задача 53гСкачать

Начертательная геометрия. Пересечение прямых с поверхностями вращения. Задача 53г

7.7. Пересечение прямой с поверхностью сферы

Видео:Точка встречи прямой с поверхностью конусаСкачать

Точка встречи прямой с поверхностью конуса

Упражнение

Заданы: сфера и прямая общего положения АВ.

Найти: точки пересечения прямой с поверхностью сферы (точки «входа» и «выхода»).

Чтобы найти точки пересечения прямой с поверхностью сферы необходимо:

  1. Заключить прямую во вспомогательную плоскость, пересекающую поверхность сферы так, чтобы получались простые фигуры (например, круг, ограниченный окружностью);
  2. Построить фигуру пересечения сферы вспомогательной плоскостью;
  3. Найти общие точки прямой и контура фигуры (окружность): так как прямая и окружность лежат в одной плоскости, то они, пересекаясь, образуют точки, общие для прямой и сферы, которые и будут являться искомыми точками (Рисунок 7.12).
  • Через прямую проводим плоскость σ. Пусть σ⊥π1 и пересекает сферу по окружности радиусом r. С – центр окружности сечения ОС⊥σ:

Как построить линию пересечения конуса вращения с цилиндром вращения

Рисунок 7.12 – Пересечение прямой с поверхностью сферы

  • Введём π3⊥π1 и π3//σ1. Построим проекцию окружности сечения на π3 и проекцию А3В3.
  • Находим точки их пересечения 12 и 23.
  • Определим видимость участков прямой.
  • На π1 точки 1 и 2 находятся на переднем полушарии, следовательно, на π2 они видимы.

Читайте также: Цилиндры в метры кубические

Видео:Пересечение поверхностей полусферы и цилиндра. Пошаговое видео. Инженерная графикаСкачать

Пересечение поверхностей полусферы и цилиндра. Пошаговое видео. Инженерная графика

7.8. Коническая поверхность

Коническая поверхность образуется движением прямой линии (образующей), которая в любом своем положении проходит через неподвижную точку и пересекает криволинейную направляющую (имеет две полости).

Тело, ограниченное замкнутой конической поверхностью вершиной и плоскостью, называется конусом .

Плоская фигура, ограниченная конической поверхностью, называется основанием конуса .

Часть конической поверхности, ограниченная вершиной и основанием, называется боковой поверхностью конуса .

Если основание конуса является кругом, то конус называется круговым .

Если вершина конуса расположена на перпендикуляре к основанию, восстановленному из его центра, то конус называется прямым круговым .

Как построить линию пересечения конуса вращения с цилиндром вращения

Рисунок 7.13 – Принадлежность точки конической поверхности

Рассмотрим вопрос принадлежности точки А поверхности конуса.
Дана фронтальная проекция точки А и она видима (Рисунок 7.13).

1 способ . Для построения ортогональных проекций точки, расположенной на поверхности конуса, построим проекции образующей, проходящей через данную точку. При таком положении точки А все её проекции – видимы.

2 способ . Точка А лежит на параллели конуса радиусом r. На π1 строим проекцию окружности (параллели) и по линии проекционной связи находим А1. По двум проекциям точки строим третью.

Видео:Начертательная геометрия (задача 4-5) Пересечение поверхностейСкачать

Начертательная геометрия (задача 4-5) Пересечение поверхностей

7.9. Пересечение прямой с поверхностью конуса

Пусть задан прямой круговой конус и прямая общего положения m (Рисунок 7.14). Найти точки «входа» и «выхода» прямой с поверхностью конуса.

  1. Через прямую m проводим вспомогательную секущую плоскость σ, дающую в сечении наиболее простую фигуру.
  2. Применение в качестве вспомогательной секущей плоскости проецирующей плоскости в данном случае нецелесообразно, так как в сечении получится кривая второго порядка, которую нужно строить по точкам.

Наиболее простая фигура – треугольник. Для этого секущая плоскость σ должна пройти через вершину S. Плоскость зададим с помощью двух пересекающихся прямых σ=SM∩MN или, что, то же самое, (σ=SM∩m).

  1. Возьмем на прямой m точку А и соединим её с вершиной. Прямая SA пересечёт плоскость основания в точке М.
  2. Построим горизонтальные проекции этих объектов.
  3. Продлим фронтальную проекцию прямой m до пересечения с плоскостью основания в точке N.

Как построить линию пересечения конуса вращения с цилиндром вращения

Рисунок 7.14 – Построение точек пересечения прямой с поверхностью конуса

  1. Построим её горизонтальную проекцию.
  2. Соединим точки M1N1, на пересечении с окружностью основания получим точки 1 и 2.
  3. Строим треугольник сечения конуса плоскостью σ, соединив точки 1 и 2 с вершиной S.
  4. На пересечении образующих 1-S и 2-S с прямой m получим искомые точки K и L.
  5. Определим видимость прямой относительно поверхности конуса.

На анимации ниже представлена последовательность построения точек пересечения прямой с поверхностью конуса.

Видео:39. Построение линии пересечения цилиндра вращения с поверхностью наклонного конусаСкачать

39. Построение линии пересечения цилиндра вращения с поверхностью наклонного конуса

7.10. Пересечение цилиндра плоскостью

Пусть плоскость сечения γ – фронтально-проецирующая (Рисунок 7.15).

  1. Если плоскость сечения γ параллельна оси цилиндра, то она пересекает цилиндр по четырехугольнику.
  2. Если плоскость сечения γ перпендикулярна оси цилиндра, то она пересекает цилиндр по окружности.
  3. Если плоскость сечения γ не параллельна и не перпендикулярна оси цилиндра в сечении эллипс.

Рассмотрим алгоритм построения сечения – эллипс (Рисунок 7.15):

Как построить линию пересечения конуса вращения с цилиндром вращения

Рисунок 7.15 – пересечение цилиндра плоскостью

  1. Находим и строим характерные точки (точки, не требующие дополнительных построений) – в нашем случае, точки принадлежащие крайним образующим – 1, 3, 5, 7. Одновременно с этим, данные точки определяют величину большой и малой оси эллипса.
  2. Для построения участка эллипса необходимо построить не менее 5-ти точек (так как лекальная кривая второго порядка определяется как минимум пятью точками). Для построения точек 2, 4, 6, 8 возьмем на π1 произвольно расположенные образующие цилиндра, которые проецируются на данную плоскость проекции в точки.
  3. Построим вторые проекции данных образующих. Из точек пересечения вторых проекций образующих с проекцией плоскости сечения γ проводим линии связи к π3. Для построения третьей проекции, например, точки 6 измеряем расстояние Δ1 и откладываем его по соответствующей линии связи на π3. Симметрично ей, относительно оси вращения, строим точку 4. Аналогично строятся другие точки.

Видео:Пересечение двух поверхностей вращения - конуса и цилиндраСкачать

Пересечение двух поверхностей вращения - конуса и цилиндра

7.11. Пересечение сферы плоскостью

Плоскость пересекает поверхность сферы всегда по окружности. Задачу пересечения плоскости со сферой мы рассматривали при решении задачи построения точек пересечения прямой с поверхностью сферы (см. выше).

Видео:Построение линии пересечения поверхностей методом СЕКУЩИХ ПЛОСКОСТЕЙСкачать

Построение линии пересечения поверхностей методом СЕКУЩИХ ПЛОСКОСТЕЙ

7.12. Пересечение конуса плоскостью

Рассмотрим пять возможных вариантов расположения плоскости относительно поверхности прямого кругового конуса. Пусть плоскость сечения перпендикулярна плоскости проекций π2 (Рисунок 7.16).

Как построить линию пересечения конуса вращения с цилиндром вращения

  1. Если плоскость проходит через вершину (1) – в сечении две образующие и прямая пересечения с плоскостью основания.
  2. Если плоскость перпендикулярна оси вращения конуса (2) – в сечении окружность.
  3. Если плоскость не параллельна ни одной образующей (пересекает все образующие (3)) – в сечении эллипс.
  4. Если плоскость параллельна одной образующей конуса – в сечении парабола (на примере – плоскость сечения (4) параллельна крайней образующей конуса).
  5. Если плоскость параллельна двум образующим (пересекает обе полости конической поверхности (5)) – в сечении гипербола (рисунок 7.17).

Как построить линию пересечения конуса вращения с цилиндром вращения

Рисунок 7.17. Плоскость сечения параллельна двум образующим конуса

Ниже, на моделях, представлены варианты положения секущей плоскости относительно поверхности конуса, при которых получаются сечения в виде эллипса, параболы и гиперболы.

Как построить линию пересечения конуса вращения с цилиндром вращения

Рисунок 7.18 – Сечение конической поверхности плоскостью (а — эллипс, б — парабола, в — гипербола)

Рассмотрим пример построения сечения конической поверхности плоскостью.

Как построить линию пересечения конуса вращения с цилиндром вращения

Рисунок 7.19 – Построение пересечения конической поверхности плоскостью

Пусть задана секущая проецирующая плоскость σ⊥π2 (Рисунок 7.19). Если продлить коническую поверхность и проекцию плоскости, то видно, что плоскость пересекает вторую ветвь конической поверхности, следовательно, в сечении получится гипербола.

  1. Построим характерные точки. Это точки, лежащие на крайних образующих и на окружности основания конуса (1, 2, 3). Их проекции строятся по линиям проекционной связи.
  2. Для построения промежуточных точек, воспользуемся методом вспомогательных секущих плоскостей. Введём плоскость α⊥π2 и перпендикулярно оси вращения, что даст в сечении окружность радиусом r. Строим эту окружность на π1. Плоскость α пересекает и заданную плоскость сечения по прямой, проекции которой на π1 и π3 совпадают с линиями проекционной связи.
  3. На пересечении этих двух сечений на плоскости проекций π1 строим точки 4, 5. Профильные проекции этих точек строим по линии проекционной связи, откладывая расстояние от оси вращения конуса, равное Δ.
  4. Аналогично строим точки 6, 7. Плавно соединим построенные точки, образуя гиперболу.
  5. Обведём то, что осталось от конуса после такого среза с определением видимости. В нашем примере все проекции построенной кривой будут видимы.

На анимации ниже представлена последовательность построения пересечения конической поверхности плоскостью.

7.13. Задачи для самостоятельной работы

1. Достроить проекции сферы с заданным вырезом (Рисунок 7.20).
Как построить линию пересечения конуса вращения с цилиндром вращения
Рисунок 7.20
2-3. Построить три проекции конуса с призматическим отверстием (Рисунки 7.21, 7.22).
Как построить линию пересечения конуса вращения с цилиндром вращения
Рисунок 7.21
Как построить линию пересечения конуса вращения с цилиндром вращения
Рисунок 7.22
4. Построить точки «входа» и «выхода» прямой при пересечении её с поверхностью полусферы (Рисунок 7.23).
Как построить линию пересечения конуса вращения с цилиндром вращения
Рисунок 7.23

Поделиться или сохранить к себе:
Технарь знаток