Как построить параболический цилиндр в матлабе

Авто помощник

Построить цилиндрическую поверхность, направляющая которой является «улиткой» Паскаля (R=b+a*cos(fi)). b и a по умолчанию равны 1, fi=0:Pi/180:2*Pi. Длина образующей равна 4.

Добавлено через 49 минут
Нашел более или менее похожий пример и сотворил это:

Помощь в написании контрольных, курсовых и дипломных работ здесь.

Построить линию, высекаемую на поверхности, цилиндрической поверхностью
Помогите построить. Надо построить линию, высекаемую на поверхности z=4-x^2-y^2 цилиндрической.

Построение поверхности
Построить поверхности в в MatLAB, используя функции plot3, mesh, surfl , colormap, meshgrid.

Как построить параболический цилиндр в матлабе

Построение поверхности
Добрый всем день! Помогите построить поверхность (a^2+b^2)/x + c^2/y=(w/c)^2 где, x=10, y=-10.

Построение поверхности
x1=-1.0; x2=+1.0; y1=-1.0; y2=+1.0; nx=5; ny=5; step_x=(x2-x1)/(nx-1); step_y=(y2-y1)/(ny-1);.

построение поверхности
Здравствуйте! Помогите, пожалуйста. Необходимо построить поверхность. Есть массив данных, которые я.

Построение поверхности
Здравствуйте! Необходима помощь в моделировании поверхности объекта в среде MatLab. В качестве.

Как построить параболический цилиндр в матлабе

Построение поверхности
Добрый день, форумчане. Помогите с потроением поверхности. Нужно построить поверхность.

Построение 3D поверхности по 2 массивам
Помогите решить задачу: построить трехмерную поверхность по 2 матрицам 1ая матрица- I трехмерная .

Построение поверхности по зависимости
В общем есть зависимость (z=0.524*(x/y)^3) и интересующие меня пределы x(0,5-5) и y(1-10).

Как построить параболический цилиндр в матлабе

Построение поверхности по уравнению
Всем доброго времени суток. Есть уравнение ^ + ^ + ^ =1. нужно построить по нему.

Видео:Поверхности второго порядкаСкачать

Поверхности второго порядка

Документация

Видео:Поверхности второго порядка. Поверхности вращенияСкачать

Поверхности второго порядка. Поверхности вращения

Синтаксис

Видео:Цилиндрические поверхностиСкачать

Цилиндрические поверхности

Описание

[X,Y,Z] = cylinder возвращает три 2 — 21 матрицы, содержащие x — y — и z — координаты цилиндра, не чертя его. Цилиндр имеет радиус 1 и 20 равномерно распределенных точек вокруг его окружности. Основы параллельны xy — плоскость.

Чтобы чертить цилиндр, передайте X Y , и Z к surf или mesh функция.

[X,Y,Z] = cylinder( r ) возвращает x — y — и z — координаты цилиндра с заданной кривой профиля, r , и 20 равномерно распределенных точек вокруг его окружности. Функция обрабатывает каждый элемент в r как радиус на равномерно распределенных высотах вдоль модульной высоты цилиндра. Размером каждой координатной матрицы является m — 21 , где m=numel(r) . Однако, если r скаляр, затем m=2 .

[X,Y,Z] = cylinder( r , n ) возвращает x — y — и z — координаты цилиндра с заданной кривой профиля, r , и n равномерно распределенные точки вокруг его окружности. Размером каждой координатной матрицы является m — ( n+1 ), где m=numel(r) . Однако, если r скаляр, затем m=2 .

cylinder( ___ ) строит цилиндр, не возвращая координаты. Используйте этот синтаксис с любым из входных параметров в предыдущих синтаксисах.

cylinder( ax , ___ ) графики в осях заданы ax вместо текущей системы координат. Задайте оси как первый входной параметр.

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Примеры

Цилиндр дисплея

Создайте и постройте цилиндр с радиусом, равным 1.

Как построить параболический цилиндр в матлабе

Задайте цилиндрический радиус и высоту

Задайте радиус цилиндра включением входа r . Затем задайте высоту цилиндра путем изменения возвращенного Z координата.

Задайте X Y , и Z как координаты цилиндра с радиусом 4.

Задайте высоту 20 путем изменения Z координата. Постройте цилиндр.

Как построить параболический цилиндр в матлабе

Отобразите несколько цилиндров в других местах

Создайте цилиндр и используйте возвращенные координаты, чтобы построить несколько цилиндров в других местах.

Создайте цилиндр, заданный функцией профиля 2 + cos(t) .

Постройте цилиндр со строившей в начале координат основой.

Как построить параболический цилиндр в матлабе

Постройте еще два цилиндра сверху первого цилиндра.

Как построить параболический цилиндр в матлабе

Видео:Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать

Аналитическая геометрия, 8 урок, Поверхности второго порядка

Входные параметры

r — Профилируйте кривую
вектор

Профилируйте кривую в виде вектора. cylinder обработки каждый элемент в r как радиус на равномерно распределенных высотах вдоль модульной высоты цилиндра.

n — Число точек
положительное целое число

Число точек вокруг цилиндрической окружности в виде положительного целого числа.

ax — Целевые оси
Axes объект

Целевые оси в виде Axes объект. Если вы не задаете оси, то cylinder графики в текущую систему координат.

Видео:Поверхности 2го порядка. КлассификацияСкачать

Поверхности 2го порядка. Классификация

Смотрите также

Видео:Как начертить цилиндр в объемеСкачать

Как начертить цилиндр в объеме

Открытый пример

У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?

Видео:Как в MATLAB Simulink моделировать уравнения (Структурная схема САУ)Скачать

Как в MATLAB Simulink моделировать уравнения (Структурная схема САУ)

Документация MATLAB

Видео:GMP – 3. Основы MATLAB SimulinkСкачать

GMP – 3. Основы MATLAB Simulink

Поддержка

© 1994-2021 The MathWorks, Inc.

1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.

2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.

3. Сохраняйте структуру оригинального текста — например, не разбивайте одно предложение на два.

4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.

Читайте также: Почему трещина в блоке цилиндров

5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.

Видео:Моделирование физических систем: 08. ТеплотехникаСкачать

Моделирование физических систем: 08. Теплотехника

Как построить параболический цилиндр в матлабе

Трехмерная графика в MATLAB .

Решение обыкновенных дифференциальных уравнений в MATLAB .

1. Элементарная трехмерная (3- D ) графика — функция plot 3.

Функция plot 3 в определенном смысле является аналогом функции plot . С помощью plot 3 формируется построение линии в трехмерном пространстве по заданным трем векторам .

Пример 1.1. Построение трехмерной пространственной спирали.

t =0:0.05:9* pi ; x =2* sin ( t ); y = cos ( t ); % t , x , y — вектора одинакового размера

xlabel( ‘о сь X’ ),ylabel( ‘ось Y’ ),zlabel( ‘ось Z-t’ )

title(‘ Пространственная спираль ‘)

% Сохранить программу в текстовом редакторе MATLAB, например, под именем sp3

% Поменять местами x, y, t в функции plot3

% Сменить начертание и цвет графика

% Добавить пояснение к начертанию в виде легенды — legend( ‘ звездочки ‘ )

%Установить следующий диапазон для t: t=-9*pi:0.05:9*pi;

% Пояснения к графику с помощью функций gtext для 3D-графики не применяются

Пример 1.2. Построение сферы по окружностям.

n=input(‘n=’); % Клавиатурный ввод числа n по запросу в командном окне

t2=(pi/2)*(-n:5:n)’/n ; % транспонированный вектор

E=ones(size(t1)); % матрица единиц размерности вектора t1

% Сохранить программу в текстовом редакторе MATLAB под именем sfera3 .

% Программу выполнить при различных значениях n .

% При n =100 изменить шаг в массивах t1 и t2 : для t1 и t2 одновременно: 3, 1, 10, 25, 50

% Для t1=50, для t2=1; для t1=1, для t2=50.

% Программу sfera3 выполнить без клавиатурного ввода, а для заданного числа n .

% Установить в программе различные цвета изображения сферы.

% Использовать различные коэффициенты для t1 и t2: pi/5, pi/10, pi/50, 2*pi, 5*pi одновременно

% и в сочетании с коэффициентом, равным pi (3.14), при одном из векторов ( t1 или t2).

2. Формирование прямоугольной сетки на плоскости — meshgrid .

% Результатом действия функции meshgrid является формирование «основания» в плоскости XOY для построения над этим основанием пространственной фигуры.

3. Построение пространственных сетчатых фигур — mesh.

Z = 1*x.* exp(-x.^2 — y.^2); % Коэффициент 1 заменить: 2, 5, 10, 20

% Для сравнения применить plot3(x,y,Z),grid вместо mesh(Z) .

R=sqrt(x.^2+y.^2)+0.001; %Коэфф. 0.001 введен для исключения деления на ноль

% Коэффициент 1 заменить: 5, 10, 20, 0.5, 0.1

% Для сравнения применить plot3(x,y,Z),grid

4. Сетчатая поверхность с проекциями линий постоянного уровня — meshс.

% Коэффициент 1 заменить: 5, 10, 20, 0.5, 0.1

% Коэффициент 1 заменить: 5, 10, 20, 0.5, 0.1

5. Сетчатая поверхность с пьедесталом плоскости отсчета на нулевом уровне— meshz.

% Коэффициент 1 заменить: 5, 10, 20, 0.5, 0.1

% Коэффициент 1 заменить: 5, 10, 20, 0.5, 0.1

6. Построение пространственных сплошных фигур — surf.

% Коэффициент 1 заменить: 5, 10, 20, 0.5, 0.1

% Коэффициент 1 заменить: 5, 10, 20, 0.5, 0.1

1. С плошная поверхность с проекциями линий постоянного уровня — surfс.

% Коэффициент 1 заменить: 5, 10, 20, 0.5, 0.1

% Коэффициент 1 заменить: 5, 10, 20, 0.5, 0.1

8. Стандартные сферические поверхности — sphere .

8 .1. Сфера единичного радиуса — sphere ;

» sphere % равносильно sphere(20);

8.2 Формирование сферы с произвольным радиусом, например, равным 5;

% Выполнить построения с надписями

9. Пространственное распределение вероятностей Гаусса — peaks.

peaks; % По умолчанию формируются матрицы размера 49 ´ 49, по которым строится

%поверхность с пометками координат и титульной надписью ‘Peaks’.

peaks, title(‘Gauss’); % Со специальной титульной надписью

peaks(78); % Размерность матриц построения 78 ´ 78

peaks(25); % Размерность матриц построения 25 ´ 25

z=peaks; surf(z); % Построение поверхности Гаусса по заданной 49 ´ 49 матрице z.

% Сравнить с поверхностью на основе функции mesh(z)

% Сравнить с функцией mesh(z)

z=3*peaks(78); surf(z), title(‘Gauss’) % С множителем по оси Z .

% Применить множители: 4, 10, 33, 50

Пример 9.3. Цветовые массивные уровни на плоскости от распределения Гаусса.

[X,Y,Z]=peaks; pcolor(7*X,12*Y,20*Z),title(‘Цвет’) % С расширенной %областью определения на плоскости XOY — множители 7 и 12 и с изменением по Z — коэф-

Пример 9.4. Распределение Гаусса с задаваемой областью определения на плоскости XOY.

% Функция pcolor позволяет наблюдать обл а сть определения в плоскости XOY

% Изменить шаг по x и y : 0.2, 0.1, 0.5

% Изменить границы по x и y одновременно и порознь :(-7:0.2:3),(-7:0.2:1),(-7:0.2:-1),(-7:0.2:-3)

Пример 9.5. Линии уровня трехмерной поверхности — contour.

% Линии уровня без учета масштаба плоскости XOY:

contour(peaks),grid,title(‘ Линии уровня ‘) % 10 линий уровня по умолчанию

contour(peaks,4),grid,title(‘ Линии уровня ‘) % 4 линии уровня

contour(peaks,10),grid,title(‘ Линии уровня ‘) % 10 лини q уровня

contour(peaks,15),grid,title(‘ Линии уровня ‘) % 15 лини q уровня

contour(peaks,25),grid,title(‘ Линии уровня ‘) % 25 лини q уровня

% Применить функцию contour для стандартной сферической поверхности sphere с различным числом линий уровня.

Пример 9.6. Линии уровня с учетом масштаба плоскости XOY (два примера):

Читайте также: Рено трафик главный цилиндр сцепления замена

Пример 9.7. Линии уровня с учетом масштаба плоскости XOY и заданным числом (три примера):

Пример 9.7. Линии уровня с цветовой окраской плоскости XOY — contourF.

contourF(peaks),title(‘Цвет линий уровня’)

Пример 9.8. «Пространственные» линии уровня — contour3.

contour3(peaks,25),title(’25 л иний уровня в пространстве ‘)

Пример 9.9. Обзор поверхности из заданной точки пространства — view.

peaks,view(10,45); % Число 10 — азимут обзора, 45 — угол обзора (все в градусах)

[X,Y]=meshgrid(-7:0.3:7,-5:0.3:5);Z=peaks(X,Y);surf(Z), view( — 10,45)

% Задать различные параметры функции view и выполнить построение различных поверхностей.

10. Пострение поверхностей относительно полярной системы координат.

Z=peaks(x1,y1);surf(x1,y1,Z),title(‘ Полярная плоскость ‘)

% С изменением точки обзора

Z=peaks(x1,y1);surf(x1,y1,Z),title(‘ Полярная плоскость ‘),view(-12,45)

11. Построение цилиндрических поверхностей — cylinder.

cylinder % Построение цилиндра без параметров, по умолчанию

cylinder(40) % Построение цилиндра с заданным размером плоскости XOY

cylinder(40,60) % Цилиндр с заданным размером плоскости XOY и числом образующих %граней — 60

% Построение совокупности цилиндрообразующих поверхностей

[x,y,z]=cylinder([5 0],160); surf(x,y,z) % Конус по заданному вектору [5,0]

[x,y,z]=cylinder([5 0 5],160); surf(x,y,z) % 2 к онуса

[x,y,z]=cylinder([5 0],3); surf(x,y,z) % Пирамида

[x,y,z]=cylinder([5 0 5],3); surf(x,y,z) % 2 пиирамиды

[x,y,z]=cylinder([5 12 12],100); surf(x,y,z)

[x,y,z]=cylinder([5 12 5],100); surf(x,y,z)

[x,y,z]=cylinder([5 12 12 5],100); surf(x,y,z)

[x,y,z]=cylinder([5 12 5 12 5 12],100); surf(x,y,z)

[x,y,z]=cylinder([5 12 12 5 18],100); surf(x,y,z)

[x,y,z]=cylinder([5 12 12 5 5 18 18],100); surf(x,y,z)

% Построение совокупности цилиндрообразующих поверхностей с масштабированием

[x,y,z]=cylinder([5 12 12 5 5 18 18],100); surf(x,y,20*z)

plot(x,20*z),grid % Масштаб плоскости XOZ

plot(7*x,y),grid % Масштаб плоскости XOY

plot(7*x,13*y),grid % Масштаб плоскости XOY

Решение обыкновенных дифференциальных уравнений в MATLAB.

Для решения обыкновенных дифференциальных уравнений (ODE) могут быть применены численные методы, которые в MATLAB реализованы в специальных функциях-решателях: ode45, ode23, ode113 .

Общий порядок программирования:

1) Создается М-функция с описанием правых частей дифференциальных уравнений;

2) Создается М-сценарий с выбранным решателем;

Пример 1. Решить следующую систему обыкновенных дифференциальных уравнений с заданными начальными условиями:

% Программа решения примера 1

% Создаем М-функцию под именем dif31.m

% Создаем М-сценарий под именем ddd45_31.m

% Сценарий решения с помощью ode45

T=[0 15]; % Интервал интегрирования

[t,x]=ode45(‘dif31’,T,x0); %t, x — выходные переменные решателя ode45

plot(t,x),grid,title(‘ Пример 3.1 ‘),legend(‘X1′,’X2’)

% Изменить начальные условия:

% Изменить интервал интегрирования: от 0 до 20, от 0 до 7.

% Вывести графические результаты с различным начертанием координат

% Прменить решатели ode23, ode113 . Сравнить результаты покоординатно, для чего вывести результаты решения и свести их в таблицу, например, в WORD .

Пример 2. Решить следующую систему линейных дифференциальных уравнений с заданными начальными условиями:

% Создаем М-функцию с именем dif32.m

function f=dif32(t,x); % t, x — входные переменные для М-функции

%Создаем М-сценарий под именем ddd45_32

% Сценарий решения примера 2

x0=[0;0;0]; % x0 — вектор начальных условий

% Изменить интервал интегрирования

% Изменить начальные условия

% Вывести графические результаты с различным начертанием координат

% Использовать решатели ode23, ode113 .

Пример 3. Уравнение Ван-дер-Поля.

Для решения дифференциального уравнения 2-го порядка сначала приведем его к системе дифференциальных уравнений 1-го порядка:

% Создаем М-функцию под именем van33.m

%Создаем М-сценарий под именем ddd45_33

plot(t,X),grid,title(‘ Ур-е Ван-дер-Поля ‘ ), legend(‘X1′,’X2’)

% Изменить интервал интегрирования

% Изменить начальные условия ( только все нулевые не должны быть)

% Изменить множитель в уравнении (вместо 2)

% Вывести графические результаты с различным начертанием координат

% Использовать решатели ode23, ode113 .

Пример 4. Интегрирование дифференциальных уравнений с выводом результатов в заданн ом диапазоне точек независимого переменного. Видоизменим пример 2 в сценарии задания интервала интегрирования.

% Сценарий решения примера 4

T=[0:1:6,7:2:18]; % от 0 до 6 шаг 1, от 7 до 18 шаг 2

Пример 5. Интегрирование дифференциальных уравнений с выводом результатов в заданных точках независимого переменного. Видоизменим пример 2 в сценарии задания интервала интегрирования.

% Сценарий решения примера 5

T=[0 0.5 1 1.5 3 4 8]; 7 точек переменного t

Задание к примерам 1-5: произвести графический вывод координат каждой в отдельности

Пример 6. Интегрирование систем линейных дифференциальных уравнений в матричном виде, т.е.

где — вектор переменных состояния размера n ´ 1, — вектор входного воздействия размера rx1, — матрицы чисел размера n ´ n, n ´ r, соответственно .

% Матрицы и берем из примера 2

% Создаем М-функцию под именем syst36.m

A=[-3,0,0;1,-2,0;0,4,-1]; % Матрица А размера 3 ´ 3

B=[10 0 0;0 0 0;0 0 0]; % Матрица B размера 3 ´ 3

u=[1;1;1]; % Входное воздействие размера 3 ´ 1

ds36=A*x+B*u; % Описание правой части матричного дифференциального уравнения (6.1)

% Создаем М-сценарий под именем ddd45_36

% Сценарий решения примера 3.6

plot(t,x),grid,title(‘ Система ур-й 3-го порядка ‘),

% Решить систему с двумя воздействиями, с одним воздействием

% Вывести графические результаты с различным начертанием координат

% Вывести графические результаты с по отдельным координатам

% Создать программу решения системы дифференциальных уравнений 4-го порядка

% Использовать решатели ode23, ode113 .

Решение обыкновенных дифференциальных уравнений

с заданной точностью и с параметрами.

Решатели дифференциальных уравнений по умолчанию производят численное интегрирование с относительной погрешностью и вектором абсолютной погрешности со значением по всем компонентам вектора.

Читайте также: В цилиндре находится идеальный газ его переводят

1. Установление заданной относительной погрешности RelTol — ODESET( odeset) .

С помощью установления относительной погрешности RelTol контролируется количество «правильных» цифр в решении дифференциального уравнения в соответствии с общей записью , где показатель степени P есть число контролируемых цифр в решении.

Пример1. Уравнение Ван-дер-Поля с заданной относительной погрешностью.

С помощью функции ODESET задаются опции решателя дифуравнений с помощью соответствующих строковых символов, которых всего может быть 18. Перечень строковых символов функции ODESET можно просмотреть из командной строки, набрав в ней ODESET

% Сформируем М-функцию для описания правых частей дифференциальных уравнений

% Сохрани ть под именем van33

% Создадим М-сценарий решения на основе ode23 и с относительной погрешностью, равной

% М-сценарий сохранить под именем ret71.

% Формат записи функции odeset включает строковый служебный символ RelTol и задаваемую %величину относительной погрешности (0.1 для d1 и 0.2 для d2).

% d1 и d2 подставляются в соответствующие решатели ( ode23).

— изменить коэффициент в М-функции van33 : 0.3, 2.3;

— изменить для d1 относительную погрешность: 1, 0.5, 0.1, 0.01, 0.001, 0.0001 (для ode23).

Пример 2. Анализ нелинейной тест-системы с задаваемой относительной погрешностью вычислений в решателях MATLAB.

где — постоянные действительные числа.

2.1. Проинтегрируем тест-систему с коэффициентами и с относительной погрешностью, равной 0.1, 0.01, 0.001, 0.4, 0.3, 0.2

% Создадим М-функцию под именем dif21

% Создадим М-сценарий под именем syst21

% Введем относительную погрешность 0.1

% В сценарии применим функцию odeset

% Проанализировать тест-систему по 2-й и 3-й координатам.

% Для графического вывода результатов по 2-й координате следует ввести plot в виде

%% Для графического вывода результатов по 3-й координате следует ввести plot в виде

% Проанализировать тест-систему с относительной погрешностью, равной 0.01, 0.4, 0.3, 0.2

% Проанализировать тест-систему с помощью решателей ode45, ode113 , сравнить результаты.

2. Задание абсолютной погрешности — AbsTol .

Абсолютная погрешность AbsTol контролирует разницу между ожидаемым решением и его действительным значением. AbsTol начинает проявляться, когда компонента (координата) решения становится неожидаемо большой. Влияние AbsTol зависит также от интервала и масштаба интегрирования. По умолчанию решатели дифференциальных уравнений Matlab устанавливают величину абсолютной погрешности, равную .

Пример3. Уравнение Ван-дер-Поля с заданной абсолютной погрешностью — ‘AbsTol’ .

% Используем имеющую М-функцию описания уравнения Ван-дер-Поля — van33

% Создадим М-сценарий ( присвоить имя) с задаваемой абсолютной погрешностью по всем координатам и по %одной из возможных

a1=odeset(‘AbsTol’,0.5); % Скаляр 0.1 по всем координатам

% Задание избирательной абсолютной погрешности осуществляется с помощью вектора в виде :

% По первой координате погрешность равна 0.5, по 2-й — 0.000001

% В целом сценарий (присвоить имя) должен иметь вид

% Поскольку система уравнений Ван-дер-Поля имеет взаимозависимые координаты, то интегрирование осуществляется практически с наименьшей погрешностью, т.е. с 0.000001

— Применить скаляр абсолютной погрешности: 0.3, 0.1, 0.01.

— Вывести график по 2-й координате.

3. Интегрирование дифференциальных уравнений с параметрами.

Пример 4. Проинтегрировать однородную систему нелинейных дифференциальных уравнений с четырьмя параметрами k1, k2, k3, a:

при следующих начальных условиях:

Целью является анализ решений при различных параметрах, входящих в систему.

% Создадим М-функцию под именем dif44 с ключевым словом flag

switch flag % Начало процедуры описания правых частей дифуравнений

case » % Состояние flag с опциями по умолчанию

end % Окончание описания правых частей дифуравнений с опциями по умолчанию

% Создадим М-сценарий под именем syst44 для решателя ode23 c опциями по умолчанию

x0=[0;1;-1]; % Вектор начальных условий

tt=[0,25]; % Интервал интегрирования

k1=input(‘k1=’)%2.333; % Можно также k1=2.333;

k2=input(‘k2=’)%-0.7789; % Можно также k2=-0.7789;

k3=input(‘k3=’)%-0.7888; % Можно также k3=-0.7888;

a=input(‘a=’)%-0.1; % Можно также a=-0.1;

plot(t,x),grid,title(‘ Система с параметрами ‘), legend( ‘x1’ , ‘x2’ , ‘x3’ )

% В записи функции ode23 символ [ ] указывает на опции ( RelTol, AbsTol и др.), принятые по %умолчанию

— Изменить параметр k1: 2, 1, 0.5, 0.2; ( остальные исходные) ;

— Изменить параметр k2: -0.111, -0.333,-0.555,0.7789 ( остальные исходные) ;

— Изменить параметр k3: -1.333, -0.333, -0.666, 0.7888 ( остальные исходные) ;

— Изменить параметр a: -1, 1, 0, 0.5 ( остальные исходные) ;

Произвести интегрирование системы при:

Пример 5. Интегрирование систем с циклическим изменением параметра.

% Используем М-функцию dif55

% Видоизменим М-сценарий syst66 так, чтобы программно изменялся какой-либо параметр (например, k3) и происходило наложение графиков решения по заданной координате (например, по ). Новый М-сценарий будет с именем syst77.

if i==-0.51 % Двойное равенство соответствует логической истине

plot(t,x(:,2),’r’),title(‘ Система с циклическим параметром ‘ )

k3=i; % Без точки с запятой (;) выводятся значения k3

— Расширить диапазон изменения параметра k3;

— Написать программу с изменением параметра k2 ;

— Написать программу с графическим выводом всех координат системы при k3=0.51 и только координаты при остальных значениях параметра k3 .

📺 Видео

когда без спроса трогают твой мотоцикл🤪 #мотоТаня she touching your bike without asking #motoTanyaСкачать

когда без спроса трогают твой мотоцикл🤪 #мотоТаня she touching your bike without asking #motoTanya

18. Модель в круге с сохранением угловСкачать

18. Модель в круге с сохранением углов

5. Практика 1 ГиП . Моделирование движения поршня гидравлического цилиндра на SimInTechСкачать

5. Практика 1 ГиП . Моделирование движения поршня гидравлического цилиндра на SimInTech

Matlab: взаимодействие с Excel, Simulink. Построение графиков в Matlab.Скачать

Matlab: взаимодействие с Excel, Simulink. Построение графиков в Matlab.

Лекция. Гиперболоиды, параболоиды, конус. Исследование методом сечений.Скачать

Лекция. Гиперболоиды, параболоиды, конус. Исследование методом сечений.

Моделирование энергосистем и систем силовой электроники на базе SimPowerSystems и ARTEMiS (OPAL-RT)Скачать

Моделирование энергосистем и систем силовой электроники на базе SimPowerSystems и ARTEMiS (OPAL-RT)

Построение гиперболического параболоидаСкачать

Построение гиперболического параболоида

Уроки Компас 3D.Развертка цилиндраСкачать

Уроки  Компас 3D.Развертка цилиндра

Моделируем спиннер в MATLAB/SimulinkСкачать

Моделируем спиннер в MATLAB/Simulink
Поделиться или сохранить к себе:
Технарь знаток