Видео:Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)Скачать
Как построить проекцию линии пересечения цилиндра с цилиндром
Сечение цилиндра наклонной плоскостью
Этим уроком я открываю серию статей, посвященных построению линий пересечения простых тел вращения с наклонной плоскостью. Умение выполнять эти действия вам поможет не только решить одноименные задачи, но и будет серьезным подспорьем при нахождении натурального вида фигуры сечения сложных деталей. Ведь детали состоят из кусочков простых тел: конусов, цилиндров, параллелепипедов, сфер. Сегодня я научу вас строить линию пересечения плоскости с цилиндром. Исходное задание как правило имеет вид как на картинке слева от этого абзаца. Изображены два вида, дающие нам представление о том, что фигура является цилиндром вращения, а так же задается секущая плоскость, в моем случае это плоскость Pv.
Давайте попробуем предположить, что мы получим на каждом из трех видов? Определенно можно сказать, что вся линия пересечения на фронтальном виде сольется с прямой обозначающей секущую плоскость, а на горизонтальном виде, все точки пересечения будут лежать на окружности, которой задан цилиндр. Главный интерес данной задачи заключается в нахождении линии пересечения на третьем виде(на профильной проекции цилиндра). Вероятнее всего вы уже догадываетесь, что на третьем виде линия пересечения будет представлять собой эллипс. В частном случае, если секущая плоскость наклонена к цилиндру вращения под углом ровно 45 градусов, то в проекция сечения на третьем виде будет являться эллипсом с равными осями, т.е. эллипс выродится в окружность. Это был маленький кусочек теории, сейчас же предлагаю перейти к практическим построениям. Итак, перед нами цилиндр с заданной фронтально-проецирующей секущей плоскостью. Начнем с подготовки третьего вида. Он будет точно такой же как и главный вид:
Первым делом давайте обозначим определяющие точки, которые можно найти сразу, без дополнительных построений. Определим точки 1′ и 2′. Горизонтальные проекции 1 и 2 лежат на пересечении образующей окружности с осью, а проекции 1» и 2» лежат на оси цилиндра. Это нужно либо понимать, либо поверить мне ?
Еще одна пара определяющих точек — точки 3 и 4. Определим их фронтальную проекцию, а потом найдем горизонтальную и профильную. Это не сложно:
Если бы наша задача была построить сечение в AutoCad, то на этом можно было бы остановиться, поскольку мы уже имеем 4 точки, определяющие оси эллипса. Но так как мы учимся чертить руками, то мы должны построить дополнительные точки, которые бы позволили нам с вами, не обладая точностью компьютера, максимально точно начертить линию пересечения.
Проведем вспомогательную секущую плоскость Q1. На фронтальной проекции в точке пересечения Q1 и Pv отметим точки 5′ и 6′. Снесем их по линии связи на горизонтальную проекцию, отметим там точки 5 и 6:
Теперь нужно построить профильные проекции 5» и 6». Отложим на фронтальной проекции влево от оси точку 6» на расстоянии равном удалению точки 6 от оси окружности на горизонтальной проекции. Эти соответствующие расстояния на рисунке ниже отмечены зелеными отрезками:
Чтобы построить точку 5» нужно выполнить ровно такие же действия. Нужно отложить аналогичное расстояние вправо от оси цилиндра. Соответствие размеров на профильной и горизонтальной проекции на рисунке ниже обозначено синими отрезками:
Проведем еще одну вспомогательную секущую плоскость — Q2. Мне нравится проводить вспомогательные плоскости симметрично относительно середины сечения — так во многих случаях удается сделать менее загруженный линиями чертеж. Т.е. я провел Q2 симметрично Q1 относительно точек 3′,4′. Полученные с ее помощью проекции точек 7 и 8 строим по аналогии с построениями проекций точек 5 и 6:
Читайте также: Цилиндр для замка 30х50 с вертушкой
Мы ограничимся построением двух вспомогательных плоскостей и проведем эллипс по имеющимся точкам. Но на практике имеет смысл провести еще хотя бы по одной вспомогательной плоскости выше и ниже точки пересечения Pv с осью цилиндра. Особенно если вы не считаете себя мастером построения эллипса «от руки». Итак, завершающий этап: построение линии пересечения плоскости с цилиндром. Она имеет форму эллипса, строим его аккуратно соединяя точки. И последний штрих — на профильной проекции верхняя половина линии пересечения будет проходить за цилиндром, соответственно будет невидима. Что мы и обозначим штриховой линией.
В следующем уроке мы рассмотрим один из случаев построения линии пересечения конуса с плоскостью.
Вы можете сказать «спасибо!» автору статьи:
пройдите по любой из рекламных ссылок в левой колонке, этим вы поддержите проект «White Bird. Чертежи Студентам»
или запишите наш телефон и расскажите о нас своим друзьям — кто-то наверняка ищет способ выполнить чертежи
или создайте у себя на страничке или в блоге заметку про наши уроки — и кто-то еще сможет освоить черчение.
А вот это — не реклама. Это напоминание, что каждый из нас может сделать. Если хотите — это просьба. Мы действительно им нужны:
Автор комментария: ирина
Дата: 2012-05-29
Автор комментария: Михаил
Дата: 2012-05-30
Мне нужно вырезать эллипс в крыше для вывода металлической трубы, поэтому мне важнее начертить проекцию цилиндра на самой крыше. Спасибо.
Михаил! Ваша задача сводится к продолжению задачи о сечении цилиндра плоскостью. Необходимо найти натуральную величину получившегося сечения. Имея его на руках — распечатываем на формате соответствующего размера, вырезаем трафарет и накладываем в нужном месте на крышу. Останется обвести и произвести вырезание по полученной линии. На сайте есть урок, связанный с нахождением натуральной величины сечений, но там не разобрано построение сечений циллиндрических поверхностей. Ну а в целом — спасибо за доброе слово!
Автор комментария: sakha
Дата: 2012-08-01
Вопрос к практическому применению, понятно как изготовить шаблон верхней проекции сечения, но мне, как сварщику, непонятно как изготовить шаблон для торцовки труб. Объясните, пожалуйста. Спасибо.
Сергей, попробую предложить вам способ. Сразу оговорюсь, что вряд ли он наиболее удобный, но зато качество разметки должно получиться хорошим. Метод потребует выполнить построение развертки цилиндра с нанесением на него линии пересечения с плоскостью. Т.е. я предлагаю вам на чем либо (рубероид, упаковочная бумага, лист обоев и т.д.) построить развертку цилиндра, нанести на нее линию пересечения цилиндра с наклонной плоскостью, отрезать лишнюю часть и, приложив ее к трубе, обвести по краю. Получиться должно просто замечательно.
Думаю, идею вы поняли. Ну а реализация построения линии пересечения на развертке цилиндра — либо найдете, либо дождетесь — планирую написать соответствующую статью.
Всего наилучшего!
Автор комментария: Игорь
Дата: 2012-10-09
Автор комментария:
Дата: 2013-12-17
Автор комментария: препод по ИГ
Дата: 2014-12-14
линия пунктир(пункт по немецки точка)не показывает невидимую линию. Линия невидимого контура называется штриховая. ГОСТ 2.303
Вот! Всегда есть шанс, что кто-то не поленится найти неточность и поправит! Спасибо за замечание, исправляю!
Автор комментария: Надежда
Дата: 2016-01-09
Читайте также: Лабораторная работа измерение объема цилиндра вывод
Автор комментария: дмитрий
Дата: 2016-04-18
Спасибо, это понятно по начерт.геометрии, но хотелось бы сделать построение математическим путём, т.к. шаблон, плаз, очень большой. Если дадите буду благодарен.
Автор комментария: vlad
Дата: 2016-04-25
спасибо огромноое очень помогло вспомнил
Автор комментария: Злой Енот
Дата: 2016-09-29
Извиняюсь, Вы нарисовали бред, попробуйте построить по Вашему методу сечение цилиндра плоскостью с наклоном 45 и получите круг, а не эллипс ))))
Приветствую Злого Енота! ? Зачем строить? Это и так известно, будет круг. У меня написано: эллипс с равными осями. Частный случай. Эллипс выродится в круг. Возможно, нужно было прочитать еще пару строк? Или попробовать построить эллипс с равными осями?
Автор комментария: Борис
Дата: 2017-09-17
спасибо очень пригодилось!
Автор комментария: Никита
Дата: 2017-10-29
Здравствуйте! Подскажите как выполните такое же задание при условии что цилиндр проецируется в виде круга на профильную плоскость? Зарание спасибо.
Автор комментария: Михаил
Дата: 2020-09-02
Благлдарю!Много перелопатил информации,и в основном построенной на рекламе,а толком ничего путного,все вокруг да около,а вот зашел на Ваш сайт,сразу все стало на свои места.Ведь я где-то далеко помню,это было еще в школьные годы,и кого не спрашивал,никто дать толковую информацию так и не смог.С помощью Ваших уроков я вышел из положения,и теперь рекомендую Ваш сайт своим друзьям,знакомым.Ведь много людей занимаются строительством,и часто и густо выходят из того или иного положения методом втыка.Благодарю еще раз.
Добавьте свой комментарий:
«Чертежи от Мастера»,- так назову Вашу работу. Рекомендую Вас всем, кому нужна профессиональная помощь, тактичный совет и качественная работа.За время нашего сотрудничества у меня не только пропал панический страх перед черчением, а наоборот, появился интерес к предмету. Зачет сдан на ОТЛИЧНО! Антон, успехов Вам! Большое спасибо за Ваш труд!
Наталья, ваши слова удивительным образом прибавили сил накануне сессионной поры, когда уже было начала чувствоваться сезонная усталость. Спасибо, что нашли время оставить отзыв о нашей работе. И я буквально горд результатом нашего сотрудничества, поскольку ведь в университете вашему сыну нужно было не только сдать, но и суметь объяснить начерченное, а значит мои комментарии и разъяснения были понятны и легки в усвоении, что не может не радовать.
Видео:Как построить ЛИНИИ ПЕРЕСЕЧЕНИЯ трехгранной ПРИЗМЫ С ЦИЛИНДРОМСкачать
Как построить проекцию линии пересечения цилиндра с цилиндром
Видео:Как построить ЛИНИЮ ПЕРЕСЕЧЕНИЯ двух ЦИЛИНДРОВСкачать
Пошаговый алгоритм решения задачи №8 — построение линии пересечения поверхностей конуса и цилиндра
Необходимо построить линию пересечения поверхностей вращения — конуса с цилиндром вращения. Оси вращения данных поверхностей расположены взаимно перпендикулярно и являются проецирующими соответственно плоскостей проекций.
Для решения такой задачи по начертательной геометрии необходимо знать:
— построение поверхностей вращения на комплексном чертеже
по заданным координатам точек;
— частные случаи пересечений конуса и цилиндра вращения проецирующей плоскостью;
— метод секущей плоскости для построения линии пересечения
поверхностей.
Порядок решения Задачи
1. В правой части листа бумаги формата A3 согласно варианту задания строятся очерки поверхностей конуса и цилиндра вращения в горизонтальной и фронтальной проекциях.
Рассматривая полученный чертеж, нетрудно заметить, что линия пересечения данных поверхностей уже имеется во фронтальной плоскости проекций, т.е. она задана исходным чертежом, выделяем ее красным цветом (искомая линия). Таким образом, для решения задачи остается спроецировать (перенести) ее на горизонтальную плоскость.
2. Построение линии пересечения начинаем с отметки опорных точек. Это точки, выше (ниже) которых правее (левее) нет линии пересечения, заметим, кстати, что линия пересечения может располагаться только в местах, одновременно принадлежащих обоим поверхностям.
Читайте также: Блок цилиндров ssangyong kyron
Опорными точками на фронтальной проекции будут 1’ и 6’. Нахождение их на горизонтальной проекции не представляет затруднений. Они будут находиться на крайних образующих конуса, которые проецируется на эту плоскость прямой линией Sb. Перенеся их по линиям связи, получаем 1 и 5 (рис.8.2.а).
3. Далее, применяем метод секущей плоскости, которую можно проводить через определенный интервал или через характерные точки линии пересечения, проводим первую секущую плоскость ’ через точку 2’. Из частных случаев известно, что если секущая плоскость во фронтальной проекции пересекает конус перпендикулярно оси вращения, то в горизонтальной плоскости сечение будет в виде окружности с радиусом, взятым от оси вращения до очерка поверхности (крайней правой или левой образующих). Проводим указанную окружность данного радиуса Ra в горизонтальной плоскости, ставя ножку циркуля в центр конической поверхности. Поскольку точка 2 одновременно принадлежит конической и цилиндрической поверхности и находится в секущей плоскости, то ее горизонтальная проекция должна находиться в пересечении горизонтальных проекций от секущей плоскости по конусу и цилиндру.
Уже отмечалось, что горизонтальная проекция от секущей плоскости, по конусу — окружность; а по цилиндру — прямая линия, т.к. секущая плоскость проходит параллельно оси вращения цилиндра.
Тогда из проекции точки 2’ проводим линию связи (прямую линию сечения цилиндра) пересечения ее с окружностью и получаем горизонтальные проекции точки 2. Очевидно, что проекций точки будут две: одна — на лицевой стороне конуса 2 (нижняя точка в горизонтальной плоскости проекций), вторая — на тыльной стороне поверхности конуса 21 (верхняя точка в горизонтальной плоскости проекций) (рис.8.2.б).
4. Точно таким же способом находим горизонтальные проекции остальных точек 4 и 5, т.е. через их фронтальные проекции проводим секущие плоскости, в горизонтальной плоскости проекций — соответствующие окружности, на которые проецируем указанные точки (рис.8.3 — б).
5. Полученные горизонтальные проекции точек соединяем последовательно плавной линией с учетом видимости, которая определяется относительно обоих поверхностей. Видимость по конусу будет полной, поскольку в горизонтальной проекции любая точка, лежащая на ее поверхности будет видимой. Видимость по цилиндру определяется таким образом, что все точки, находящиеся выше диаметра цилиндра на фронтальной проекции, будут видимыми на горизонтальной проекции, а все точки, находящиеся ниже диаметра цилиндра на фронтальной проекции — на горизонтальной будут невидимыми (рис.8.3 -б).
Итак, в горизонтальной плоскости точки 1, 2, 3 будут видимыми, а точки 4, 5, 6 будут невидимыми, в точке 3 (3; 31) происходит смена видимости. Соединяя видимые точки контурной линией, а невидимые пунктирной, получаем искомую линию пересечения заданных поверхностей.
В заключение отметим два замечания:
1. В практике и в вариантах заданий встречаются так называемые полные и неполные пересечения поверхностей. При неполном пересечении, когда одна поверхность не полностью пересекает другую ( в нашем случае) линия пересечения есть одна замкнутая петля; при полном пересечении, когда одна поверхность полностью пересекает другую, линия пересечения распадается на несколько замкнутых ветвей и их будет столько, сколько полных пересечений участков заданных поверхностей. В предлагаемых вариантах заданий рассматриваются задачи с 2-3 петлями линии пересечений. Построение их такое же, как и рассмотренное построение (рис.8.4)
2. Предлагаемые задачи на пересечение поверхностей могут быть решены методом образующих, когда через заданную линию пересечения поверхностей проводится ряд образующих, отмечаются точки пересечения этих образующих с заданной линией пересечения, затем эти образующие вместе с точками на них проецируются на сопряженную плоскость проекций.
💡 Видео
Задание 54. Чертеж ЛИНИИ ПЕРЕСЕЧЕНИЯ цилиндра и призмы трехгранной Часть 1Скачать
Задание 50. Построение ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ЦИЛИНДРОВСкачать
РТ_ПБ_61.1) Построить проекции линии пересечения цилиндра плоскостью частного положения.Скачать
Задание 54. Аксонометрия ЛИНИИ ПЕРЕСЕЧЕНИЯ цилиндра и призмы трехгранной Часть 2Скачать
Построение проекций точек пересечения наклонного цилиндра прямой линиейСкачать
Линия пересечения двух поверхностей вращения (Метод вспомогательных сфер)Скачать
Построение линии пересечения конуса вращения с цилиндром вращения. Анимация.Скачать
Пересечение поверхностей полусферы и цилиндра. Пошаговое видео. Инженерная графикаСкачать
Как начертить цилиндр в объемеСкачать
Построение линии пересечения поверхности цилиндра с проецирующей плоскостиСкачать
Построение линии пересечения поверхности конуса с проецирующей плоскостьюСкачать
усеченный цилиндр-ортогональные проекции-изометрия-разверткаСкачать
Линии пересечения цилиндра с шаром. Проекции взаимного пересечения шара с цилиндром.Скачать
Построение линии пересечения поверхностей методом СЕКУЩИХ ПЛОСКОСТЕЙСкачать
Линия пересечения конуса и цилиндра (метод концентричных секущих сфер)Скачать
Начертательная геометрия. Пересечение прямых с поверхностями вращения. Задача 53гСкачать