Для построения развертки усеченного цилиндра вычерчивают усеченный цилиндр в двух проекциях (вид спереди и вид сверху), затем делят окружность на равное число частей, например на 12 (рис. 243). С правой стороны от первой проекции проводят прямую линию АБ, равную выпрямленной длине окружности, и делят ее на такое же количество равных частей, т. е. на 12. Из точек деления 1, 2, 3 и т. д. на линии АБ восстанавливают перпендикуляры, а из точек 1, 2, 3 и т. д., лежащих на окружности, проводят прямые, параллельные осевой до пересечения их с наклонной линией сечения.
Рис. 243. Построение развертки усеченного цилиндра
Теперь на каждом перпендикуляре откладывают циркулем вверх от линии АБ отрезки, равные по высоте отрезкам, обозначенным на проекции вида спереди номерами соответствующих точек. Для ясности два таких отрезка отмечены фигурными скобками. Полученные точки на перпендикулярах соединяют плавной кривой.
Построение развертки боковой поверхности конуса показано на рис. 244, а. Вычерчивают в натуральную величину боковую проекцию конуса по заданным размерам диаметра и высоты. Измеряют циркулем длину образующей конуса, обозначенной буквой R. Чертят циркулем с установленным радиусом дугу вокруг центра О, являющегося крайней точкой произвольно проведенной прямой ОА.
От точки А по дуге откладывают (циркулем небольшими отрезками) длину развернутой окружности, равную πD. Полученную крайнюю точку В соединяют с центром О дуги. Фигура АОВ будет разверткой боковой поверхности конуса.
Развертка боковой поверхности усеченного конуса строится, как показано на рис. 244,б. По высоте и диаметрам верхнего и нижнего оснований усеченного конуса в натуральную величину вычерчивают профиль усеченного конуса. Образующие конуса продолжают до пересечения их в точке О. Эта точка является центром, из нее проводят дуги, равные длинам окружностей основания и вершины усеченного конуса. Для этого делят основание конуса на семь частей. Каждую такую часть, т. е. 1/7 часть диаметра D, откладывают по большой дуге 22 раза и из образующейся точки В проводят прямую к центру дуги О. После соединения точки О с точками А и В получают развертку боковой поверхности усеченного конуса.
Читайте также: Стопор тормозного цилиндра 2101 переднего
Рис. 244. Построение разверток: а — боковой поверхности конуса, б — усеченного конуса
- Развертка усеченного цилиндра. Построение развертки цилиндра.
- Развертка усеченного цилиндра. Построение развертки цилиндра.
- Развертка верхней части цилиндра.
- Построение сечения цилиндра.
- Построение развертки цилиндра. Развертка усеченного цилиндра. Формула развертки цилиндра.
- Построение развертки цилиндра. Развертка усеченного цилиндра. Формула развертки цилиндра.
- Развертка прямого кругового цилиндра.
- Развертка прямого кругового цилиндра из ленты. Расчет развертки цилиндра.
- Развертка усеченного цилиндра.
- 🔍 Видео
Видео:усеченный цилиндр-ортогональные проекции-изометрия-разверткаСкачать
Развертка усеченного цилиндра. Построение развертки цилиндра.
Видео:Задание 38. Как начертить РАЗВЕРТКУ УСЕЧЕННОГО ЦИЛИНДРАСкачать
Развертка усеченного цилиндра. Построение развертки цилиндра.
Проекция цилиндра, срезанного плоскостью, наклонной к плоскости чертежа, по вертикальной плоскости проекции дает прямую линию, на горизонтальной — окружность, на профильной плоскости — замкнутую кривую, эллипс в искаженном виде.
Если представить себе цилиндр, срезанный плоскостью KS (рис. 1, а), параллельной основанию и проходящей через низшую точку наклонного среза 1, то нижняя часть такого цилиндра развернется в прямоугольник A1K1S1B1 (рис. 1, б) с высотой h = BS и основанием А1В1 = πD.
Рис. 1. Развертка усеченного цилиндра:
а — проекция; б — развертка.
Развертка верхней части цилиндра.
Чтобы получить развертку верхней части цилиндра выше плоскости KS, поступают следующим образом. Окружность основания делится на несколько равных частей, в приведенном примере на- восемь равных частей. Точки делений проектируют на вертикальную проекцию и проводят соответствующие образующие цилиндра 11 — 1′; 21 — 2″ и т. д. Затем делят длину развернутой окружности основания на такое же число равных частей, и из точек делений восстанавливают перпендикуляры, которые будут представлять собой те же образующие цилиндра, на которых затем нужно отложить их длины, измеряя одноименные отрезки на вертикальных проекциях (рис. 1, б). Соединив плавной кривой полученные точки, будем иметь развертку боковой поверхности усеченного цилиндра.
Для определения действительной формы поперечного сечения наклонной поверхности цилиндра вводят дополнительную плоскость проекции, параллельную плоскости сечения, на которой форма сечения спроектируется в искаженном виде — в форме эллипса.
Построение сечения цилиндра.
Для построения сечения на дополнительной плоскости проведем линию, параллельную проекции плоскости сечения, и, спроектировав на нее точки 1″ и 5″ с вертикальной проекции, получим большую ось эллипса. Затем из точки 7″ — 3″ на вертикальной проекции проведем линию, перпендикулярную большой оси эллипса, и, отложив на ней вправо и влево от большой оси отрезки 03″ и 07″, равные радиусу основания цилиндра, получим малую ось эллипса 3″ — 7″.
Положение остальных точек 2″, 4″, 6″, 8″ определяется так: на перпендикулярах к большей оси, проведенных из точек 8″ — 2″ и 6″ — 4″ вертикальной проекции, откладываем отрезки m от большей оси эллипса. Плавная кривая, проведенная через полученные восемь точек, будет эллипсом.
Читайте также: Зачем нужен цилиндр в мотоцикле
Построение эллипса на профильной проекции видно из рис. 1, а.
Для получения полной развертки поверхности цилиндра следует добавить поверхности наклонного сечения и нижнего основания цилиндра, как указано на рис. 1, б.
Видео:Развертка усеченного цилиндраСкачать
Построение развертки цилиндра. Развертка усеченного цилиндра. Формула развертки цилиндра.
Видео:Развертка цилиндраСкачать
Построение развертки цилиндра. Развертка усеченного цилиндра. Формула развертки цилиндра.
Развертка прямого кругового цилиндра.
Цилиндр диаметром D и высотой H показан на рис. 1. Развертка представляет собой прямоугольник длиной с = πD и высотой Н.
Прямой круговой цилиндр, усеченный плоскостью, параллельной его оси, показан на рис. 2. Развертка представляет собой прямоугольник высотой Н и длиной L = b + k, где b = πDᵠ/360° и k = 2 √((D/2) 2 – a 2 ) = 2a tg (ᵠ/2).
Развертка прямого кругового цилиндра из ленты. Расчет развертки цилиндра.
Цилиндр показан на рис. 3. При определении развертки можно использовать следующие зависимости:
n — число полных витков на общей длине цилиндра H, Н = nt;
Развертка усеченного цилиндра.
Для получения развертки горизонтальная проекция цилиндра делится на равные части и точки деления нумеруются (в данном случае от 0 до 12). Из точек деления проводятся вертикали до пересечения верхнего основания в точках 0′1, 1′1…, 6′1. На продолжении прямой 0’6′ откладывается отрезок длиной с = πD, который делится на принятое число равных частей. Из точек деления 00, 10, …, 60 строятся перпендикуляры до их пересечения с соответствующими горизонтальными линиями в точках 0 0 1, 1 0 1, …, 6 0 1. Полученные точки соединяются плавной кривой. Ввиду симметричности остальные точки кривой находит аналогичным путем.
Линию развертки можно определить и таким способом. На расстоянии h1 = (h + H)/2 от линии 0 0 12 0 проводится параллельная прямая. Из центра S, лежащего на прямой, описывается полуокружность радиусом А. Полуокружность делится на равные части, число которых равно половине точек деления развертки (в данном случае на шесть). Через точки деления 0ꞋꞋ, 1ꞋꞋ, …, 6ꞋꞋ проводятся горизонтальные прямые до пересечения вертикалей, проходящих через 0 0 , 1 0 , … , 12 0 . Полученные точки 0 0 1, 1 0 1, …, 12 0 1 соединяются плавной кривой.
Верхнее основание цилиндра представляет собой эллипс с полуосями a = D/2 cos α = 0′13′1 и b = D/2.
При аналитическом определении координат точек кривой развертки цилиндра, усеченного плоскостью под углом α (рис. 5), могут быть использованы следующие зависимости:
Читайте также: Затяжка блока цилиндров змз 406
xk = kx1 = πD/2 kε/180°; yk = D/2 tg α sin kε = A sin kε = A sin ᵠi,
где х1 = πD/ (2n) = πD/2 ε/180° — длина дуги окружности основания цилиндра, разделенная на 2n равных частей; ε = 360°/2n — центральный угол, соответствующий одному делению; k — порядковый номер точки; A = (H — h)/2 = (D/2) tg α — амплитуда синусоиды; ᵠi= kε.
Значения sin kε для наиболее часто употребляемых значений 2n приведены в табл. 1.
Таблица 1. Значения sin kε и sin 2 kε
2n | sin kε | sin 2 kε | 2n | sin kε | sin 2 kε | ||||||
8 | 16 | 32 | 64 | 12 | 24 | 48 | 96 | ||||
— | — | — | 1 | 0,09802 | 0,00961 | — | — | — | 1 | 0,06540 | 0,00428 |
— | — | 1 | 2 | 0,19509 | 0,03806 | — | — | 1 | 2 | 0,13053 | 0,01704 |
— | — | — | 3 | 0,29028 | 0,08426 | — | — | — | 3 | 0,19509 | 0,03806 |
— | 1 | 2 | 4 | 0,38268 | 0,14645 | — | 1 | 2 | 4 | 0,25882 | 0,06699 |
— | — | — | 5 | 0,47139 | 0,22221 | — | — | — | 5 | 0,32144 | 0,10332 |
— | — | 3 | 6 | 0,55557 | 0,30866 | — | — | 3 | 6 | 0,38268 | 0,14645 |
— | — | — | 7 | 0,63439 | 0,40245 | — | — | — | 7 | 0,44229 | 0,19562 |
1 | 2 | 4 | 8 | 0,70711 | 0,50000 | 1 | 2 | 4 | 8 | 0,50000 | 0,25000 |
— | — | — | 9 | 0,77301 | 0,59754 | — | — | — | 9 | 0,55557 | 0,30866 |
— | — | 5 | 10 | 0,83147 | 0,69134 | — | — | 5 | 10 | 0,60876 | 0,37059 |
— | — | — | 11 | 0,88192 | 0,77778 | — | — | — | 11 | 0,65935 | 0,43474 |
— | 3 | 6 | 12 | 0,92388 | 0,85355 | — | 3 | 6 | 12 | 0,70711 | 0,50000 |
— | — | — | 13 | 0,95694 | 0,91573 | — | — | — | 13 | 0,75184 | 0,56526 |
— | — | 7 | 14 | 0,98079 | 0,96194 | — | — | 7 | 14 | 0,79335 | 0,62941 |
— | — | — | 15 | 0,99518 | 0,99039 | — | — | — | 15 | 0,83147 | 0,69134 |
2 | 4 | 8 | 16 | 1,00000 | 1,00000 | 2 | 4 | 8 | 16 | 0,86617 | 0,75000 |
— | — | — | 17 | 0,89687 | 0,80438 | ||||||
— | — | 9 | 18 | 0,92388 | 0,85355 | ||||||
— | — | — | 19 | 0,94693 | 0,89668 | ||||||
— | 5 | 10 | 20 | 0,96600 | 0,93301 | ||||||
— | — | — | 21 | 0,98079 | 0,96194 | ||||||
— | — | 11 | 22 | 0,99144 | 0,98296 | ||||||
— | — | — | 23 | 0,99786 | 0,99572 | ||||||
3 | 6 | 12 | 24 | 1,00000 | 1,00000 |
Примечание: Значения sin kε и sin 2 kε даны для одной четверти окружности. В остальных четвертях они повторяются.
Ввиду симметричности синусоиды достаточно определить координаты точек одной четверти окружности, например от у0 до у3. Остальные координаты имеют соответственно равные значения. Например: у4 — у2, …, у11 = — у1 и т. д.
🔍 Видео
Построение развёртки усечённого цилиндра.Скачать
Усеченный цилиндр: проекции сечения, изометрия, развертка поверхностиСкачать
Задание 38. Как построить УСЕЧЕННЫЙ ЦИЛИНДР. Построение НВ фигуры сечения. Часть 1Скачать
Развертка усеченного цилиндра.Скачать
Уроки Solidworks.Развёртка усечённого конусаСкачать
Задание 38. Как начертить ИЗОМЕТРИЮ усеченного цилиндраСкачать
Простой расчёт развёртки конусаСкачать
Усеченный конус ч.1 Развертка усечённого конуса.Скачать
Расчет развертки усеченного цилиндра в Компас 3Д. Чертеж развертки усеченного цилиндра.Скачать
Развёртка усечённого конуса в Компас 3DСкачать
Уроки Компас 3D.Развертка цилиндраСкачать
Лекция #13Скачать
Построение развертки цилиндра. Урок 37.(Часть2.ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)Скачать
[Начертательная геометрия] Развертка цилиндра или как сделать развертку цилиндраСкачать
Как легко сделать усеченный конус (конус) из металла 2 мм. Сделай сам!Скачать