Как рассчитать клапан до себя

Авто помощник

Заполните ниже приведенную форму и в результате расчёта будет подобран список регуляторов перепада давления соответствующих заданным исходным данным.

Как рассчитать клапан до себя

Как рассчитать клапан до себя

Как рассчитать клапан до себя

Как рассчитать клапан до себя

Как рассчитать клапан до себя

Как рассчитать клапан до себя

Как рассчитать клапан до себя

Как рассчитать клапан до себя

Как рассчитать клапан до себя

Как рассчитать клапан до себя

Как рассчитать клапан до себя

Как рассчитать клапан до себя

Видео:Устройство работы регулятора давления "после себя", с пилотным 3х-ходовым управлением.Скачать

Устройство работы регулятора давления "после себя", с пилотным 3х-ходовым управлением.

Методика расчёта

Расчёт регулятора перепада давления заключается в определении пропускной способности, требуемого диапазона настройки, проверке на возникновения шума и кавитации.

Видео:Как рассчитать регулирующий клапан?Скачать

Как рассчитать регулирующий клапан?

Расчёт пропускной способности Kvs

Зависимость потерь напора от расхода через регулятор перепада давления называется пропускной способностью — Kvs.

Kvs — пропускная способность численно равная расходу в м³/ч, через полностью открытый затвор регулятора перепада, при котором потери напора на нём равны 1бар.

Kv – то же, при частичном открытии затвора регулятора.

Зная, что при изменении расхода в «n» раз потери напора на регуляторе изменяются в «n» в квадрате раз не сложно определить требуемый Kv регулятора перепада давления подставив в уравнение расчётный расход и избыток напора.

Некоторые производители рекомендуют выбирать регулятор перепада давления с ближайшим большим значением Kvs от полученного значения Kv. Такой подход выбора позволяет с большей точностью регулировать расходы ниже заданного при расчёте, но не даёт возможности увеличить расход выше заданного значения, которое довольно часто приходится превышать. Мы не критикуем вышеописанный метод, но рекомендуем подбирать регуляторы перепада давления таким образом, чтобы требуемое значение пропускной способности находилось в диапазоне от 40 до 70% хода штока. Регулятор перепада давления, рассчитанный таким образом, сможет с достаточной точностью как уменьшить расход относительно заданного, так и несколько увеличить его.

Выше приведенный алгоритм расчёта выводит список регуляторов перепада давления, для которых требуемое значение Kv попадает в диапазон хода штока от 40 до 70%.

В результатах подбора приведен процент открытия затвора регулятора перепада давления, при котором дросселируется заданный избыток напора на заданном расходе.

Видео:Регулятор давления "до себя" РКД 02Скачать

Регулятор давления "до себя" РКД 02

Подбор диапазона настройки

Диапазон настройки регулятора перепада давления зависит от силы сжатия пружины. Некоторые регуляторы перепада серийно комплектуются одной пружиной и имеют всего лишь один диапазон настройки по перепаду давлений, а некоторые могут быть укомплектованы пружинами различной жёсткости и иметь несколько диапазонов настройки. Перепад давлений который будет поддерживать регулятор, должен находиться, примерно, в средней трети диапазона регулирования.

Выше приведенный алгоритм подбора регуляторов перепада выводит список регуляторов у которых заданный перепад попадет в диапазон от 20 до 80% диапазона поддерживаемых перепадов давлений.

Видео:Регулятор давления воды "после себя" РКД 01 от производителя регуляторов давления НПЦ ПромВодОчисткаСкачать

Регулятор давления воды "после себя" РКД 01 от производителя регуляторов давления НПЦ ПромВодОчистка

Расчёт регулятора на возникновение кавитации

Кавитация – образование пузырьков пара в потоке воды проявляющееся при снижении давления в нём ниже давления насыщения водяного пара. Уравнением Бернулли описан эффект увеличения скорости потока и снижения давления в нём, возникающий при сужении проходного сечения. Проходное сечение между затвором и седлом регулятора перепада давления является тем самым сужением, давление в котором может опуститься до давления насыщения, и местом наиболее вероятного образования кавитации. Пузырьки пара нестабильны, они резко появляются и также резко схлопываются, это приводит к выеданию частиц метала из затвора регулятора, что неизбежно станет причиной его преждевременного износа. Кроме износа кавитация приводит к повышению шума при работе регулятора.

Читайте также: Разгрузочный клапан jcb 3cx

Основные факторы, влияющие на возникновение кавитации:

  • Температура воды – чем она выше, тем большие вероятность возникновения кавитации.
  • Давление воды – перед регулятором перепада, чем оно выше, тем меньше вероятность возникновения кавитации.
  • Дросселируемое давление – чем оно выше, тем выше вероятность возникновения кавитации.
  • Кавитационная характеристика регулятора – определяется особенностями дросселирующего элемента регулятора. Коэффициент кавитации различен для различных типов регуляторов давления и должен указываться в их технических характеристиках, но так, как большинство производителей не указывают данную величину, в алгоритм расчёта заложен диапазон наиболее вероятных коэффициентов кавитации.

В результате проверки на кавитацию может быть выдан следующий результат:

  • «Нет» — кавитации точно не будет.
  • «Возможна» – на клапанах некоторых конструкций возникновение кавитации возможно, рекомендуется изменить один из вышеописанных факторов влияния.
  • «Есть» – кавитация точно будет, измените один из факторов влияющих на возникновение кавитации.

Видео:ИТП. Регулятор перепада давления Danfoss. Принцип работы.Скачать

ИТП. Регулятор перепада давления Danfoss. Принцип работы.

Расчёт на возникновение шума

Высокая скорость потока во входном патрубке регулятора перепада давления может стать причиной высокого уровня шума. Для большинства помещений в которых устанавливаются регуляторы перепада, допустимый уровень шума составляет 35-40 dB(A), он соответствует скорости во входном патрубке клапана примерно 3м/c. Поэтому, при подборе регулятора перепада давления рекомендуется не превышать выше указанной скорости.

Видео:Регулятор перепада давления DN.RU PRDСкачать

Регулятор перепада давления DN.RU PRD

Расчет регулирующего клапана

Для выбора диаметра регулирующего клапана вначале необходимо рассчитать Kv — коэффициент пропускной способности по формуле:

Как рассчитать клапан до себя

где z — коэффициент запаса.
G — максимальный расход жидкости через клапан,
ΔP — перепад давления на открытом клапане,

Как рассчитать клапан до себя

Коэффициент запаса z устанавливается в диапазоне от 1.1 до 1.2, позволяет при необходимости обеспечить расход воды через систему на 10 — 20% больше расчетного.

Максимальный расход G выбираете вы, согласно ваших требований или технических условий. Зная тепловую нагрузку и температурный график G можно вычислить по этому калькулятору.

Перепад давления ΔP на полностью открытом клапане равен гидравлическим потерям при прохождении потока через клапан. ΔP зависит от диаметра клапана и скорости потока, меняется в диапазоне 0.3 — 0.7 бар, но в большинстве случаев можно принять ∆P = 0,4 бар.

Предлагаем вам воспользоваться калькулятором расчета клапана. Заполните поле с максимальным расходом G. При вводе обращайте внимание на размерность расхода, по умолчанию используются м3/час , не забудьте её изменить, если вы применяете другую размерность. Остальные величины можно оставить по умолчанию или заменить на ваши.

Видео:Настройка регулятора давления воды "до себя" РКМ-02. НПЦ ПромВодОчистка.Скачать

Настройка регулятора давления воды "до себя" РКМ-02.  НПЦ ПромВодОчистка.

Расчёт и Подбор Регулирующего клапана

Заполните ниже приведенную форму и в результате расчёта будет подобран список регулирующих клапанов соответствующих заданным исходным данным.

Давление перед регулирующим клапаном

Максимальная температура воды в месте установки

Температурный график Т1 — Т2

Перепад давлений на регулируемом участке

Это может быть перепад поддерживаемый регулятором давления, а при его отсутствии, перепад на вводе тепловой сети или напор насоса в рабочей точке

Потери давления на регулируемом участке, при расчётном расходе, без учёта потерь на клапане

Читайте также: Поршень с выемками под клапана

Допустимые потери давления на регулирующем клапане

Как рассчитать клапан до себя

Как рассчитать клапан до себя

Как рассчитать клапан до себя

Как рассчитать клапан до себя

Как рассчитать клапан до себя

Как рассчитать клапан до себя

Как рассчитать клапан до себя

Как рассчитать клапан до себя

Как рассчитать клапан до себя

Как рассчитать клапан до себя

Видео:Принцип действия резервуарного клапана с функцией поддержания давления "до себя" модели BERMAD753-66Скачать

Принцип действия резервуарного клапана с функцией поддержания давления "до себя" модели BERMAD753-66

Методика расчёта регулирующего клапана

Двухходовые регулирующие клапаны в инженерных системах имеют массу применений, самым распространённым из них стало использование в комплекте с контроллером и датчиками температуры, в качестве регулятора теплопотребления систем отопления, вентиляции и горячего водоснабжения.

Независимо от поставленной задачи, расчёт регулирующего клапана сводится к определению его пропускной способности, при которой на заданном расходе будет дросселирован заданный избыток напора. Кроме соответствия по пропускной способности, подобранный регулирующий клапан должен быть проверен на возможность возникновения кавитации и шумообразование из-за высокой скорости течения воды через него.

Регулирующий клапан необходим, прежде всего, — для регулирования, поэтому подбираться он должен таким образом, чтобы максимально приблизить зависимость регулируемой величины от хода штока к линейной, при этом следует учесть важность таких параметров как расходная характеристика клапана и авторитет регулирующего клапана.

Видео:Принцип действия редукционного клапана "после себя" модели BERMAD 720Скачать

Принцип действия редукционного клапана "после себя" модели BERMAD 720

Расчёт пропускной способности Регулирующего клапана

Зависимость потерь напора от расхода через регулирующий клапан называется пропускной способностью — Kvs.

Kvs — пропускная способность численно равная расходу в м³/ч, через полностью открытый регулирующий клапан, при котором потери напора на нём равны 1бар.

Kv – то же, при частичном открытии затвора клапана.

Зная, что при изменении расхода в «n» раз потери напора на клапане изменяются в «n²» раз не сложно определить требуемый Kv регулирующего клапана подставив в уравнение расчётный расход и избыток напора.

Некоторые производители рекомендуют выбирать регулирующий клапан с ближайшим большим значением Kvs от полученного значения Kv. Такой подход выбора позволяет с большей точностью регулировать расходы ниже заданного при расчёте, но не даёт возможности увеличить расход выше заданного значения, которое довольно часто приходится превышать. Мы не критикуем вышеописанный метод, но рекомендуем подбирать двухходовой регулирующий клапан таким образом, чтобы требуемое значение пропускной способности находилось в диапазоне от 50 до 80% хода штока. Регулирующий клапан, рассчитанный таким образом, сможет с достаточной точностью как уменьшить расход относительно заданного, так и несколько увеличить его.

Выше приведенный алгоритм расчёта выводит список регулирующих клапанов, для которых требуемое значение Kv попадает в диапазон хода штока от 50 до 80%.

В результатах подбора приведен процент открытия затвора регулирующего клапана, при котором дросселируется заданный избыток напора на заданном расходе. Приведенные значения процента открытия учитывают кривизну расходной характеристики регулирующего клапана и её искажение за счёт отклонения авторитета от 1.

Видео:Зонирование с редукционным клапаном и функцией поддержания давления "до себя" модели BERMAD 723Скачать

Зонирование с редукционным клапаном и функцией поддержания давления "до себя"  модели BERMAD 723

Подбор расходной характеристики регулирующего клапана

Расходная характеристика регулирующего клапана отображает зависимость изменения относительного расхода через клапан от изменения относительного хода штока регулирующего клапана при постоянном перепаде давления на нём.

Регулирующие клапаны с линейной расходной характеристикой рекомендуется применять для регулирования процессов в которых изменение регулируемой величины линейно зависит от расхода, они могут применяться в качестве исполнительных клапанов регуляторов расхода и для регулирования температуры смеси в с тепловых пунктах систем отопления с зависимым присоединением к тепловой сети.

Регулирующие клапаны с логарифмической (равнопроцентной) расходной характеристикой рекомендуется применять в системах изменение регулируемой величины в которых нелинейно зависит от расхода и в системах с низким авторитетом регулирующего клапана. Регуляторы с равнопроцентной расходной характеристикой отлично подходят для регулирования теплоотдачи теплообменников независимых систем отопления и систем горячего водоснабжения со скоростными теплообменными аппаратами. При авторитете регулирующего клапана 0,1 — 0,3 логарифмическая характеристика искажается на столько, что регулирование происходит практически по линейному закону (линейная характеристика).

Читайте также: Дыхательные клапаны для подземных емкостей

Основной задачей подбора регулирующего клапана, является создание линейной зависимости между регулирующим воздействием и изменением регулируемой величины, поэтому при выборе расходной характеристики следует учитывать её искажение за счёт отличия авторитета клапана от единицы.

Видео:регулятор давления топливаСкачать

регулятор давления топлива

Подбор привода регулирующего клапана

Электропривод подбирается под ранее выбранный регулирующий клапан. Электрические приводы рекомендуется выбирать из списка совместимых устройств, указанных в характеристиках клапана.

  • Узлы стыковки привода и клапана должны быть совместимы.
  • Ход штока электропривода должен быть не менее хода штока клапана.
  • В зависимости от инерционности регулируемой системы следует применять приводы с различной скоростью действия.
  • От усилия закрытия привода зависит максимальный перепад давления на клапане при котором привод сможет его закрыть.
  • Напряжение питания и управляющий сигнал привода должны соответствовать напряжению питания и управляющему сигналу контроллера.

Видео:№ 43 НЕ ДОВОЛИТЕ СЕБЯ ДО ОТРАВЛЕНИЯ. GX010186Скачать

№ 43 НЕ ДОВОЛИТЕ СЕБЯ ДО ОТРАВЛЕНИЯ. GX010186

Расчёт регулирующего клапана на возможность возникновения кавитации

Кавитация – образование пузырьков пара в потоке воды проявляющееся при снижении давления в нём ниже давления насыщения водяного пара. Уравнением Бернулли описан эффект увеличения скорости потока и снижения давления в нём, возникающий при сужении проходного сечения. Проходное сечение между затвором и седлом регулирующего клапана является тем самым сужением, давление в котором может опуститься до давления насыщения, и местом наиболее вероятного образования кавитации. Пузырьки пара нестабильны, они резко появляются и также резко схлопываются, это приводит к выеданию частиц метала из затвора клапана, что неизбежно станет причиной его преждевременного износа. Кроме износа кавитация приводит к повышению шума при работе клапана.

Основные факторы, влияющие на возникновение кавитации:

  • Температура воды – чем она выше, тем большие вероятность возникновения кавитации.
  • Давление воды – перед регулирующим клапаном, чем оно выше, тем меньше вероятность возникновения кавитации.
  • Допустимые потери давления – чем они выше, тем выше вероятность возникновения кавитации. Здесь следует отметить, что в положении затвора близком к закрытию дросселируемое давление на клапане стремиться к располагаемому давлению на регулируемом участке.
  • Кавитационная характеристика регулирующего клапана – определяется особенностями дросселирующего элемента клапана. Коэффициент кавитации различен для различных типов регулирующих клапанов и должен указываться в их технических характеристиках, но так, как большинство производителей не указывают данную величину, в алгоритм расчёта заложен диапазон наиболее вероятных коэффициентов кавитации.

В результате проверки на кавитацию может быть выдан следующий результат:

  • «Нет» — кавитации точно не будет.
  • «Возможна» – на клапанах некоторых конструкций возникновение кавитации возможно, рекомендуется изменить один из вышеописанных факторов влияния.
  • «Есть» – кавитация точно будет, измените один из факторов влияющих на возникновение кавитации.

Видео:Обучающее видео по продукции: " Регуляторы давления RDT производства ООО "Теплосила"Скачать

Обучающее видео по продукции: " Регуляторы давления RDT производства ООО "Теплосила"

Расчёт регулирующего клапана на возникновение шума

Высокая скорость потока во входном патрубке регулирующего клапана может стать причиной высокого уровня шума. Для большинства помещений в которых устанавливаются регулирующие клапаны допустимый уровень шума составляет 35-40 dB(A) который соответствует скорости во входном патрубке клапана примерно 3м/c. Поэтому, при подборе регулирующего клапана рекомендуется не превышать выше указанной скорости.

🎬 Видео

Как работает регулятор давления топлива и обратный клапан в топливной системе.Скачать

Как работает регулятор давления топлива и обратный клапан в топливной системе.

Как легко и просто проверить РДТ, регулятор давления топлива для Шанс, Сенс, Ланос и Ваз.Скачать

Как легко и просто проверить РДТ, регулятор давления топлива для Шанс, Сенс, Ланос и Ваз.

6 признаков неисправности клапана PCV! Устройство, принцип работы, диагностика!Скачать

6 признаков неисправности клапана PCV! Устройство, принцип работы, диагностика!

Автоматические регуляторы перепада давления прямого действия Danfoss. Настройка регуляторов DPR, AFPСкачать

Автоматические регуляторы перепада давления прямого действия Danfoss. Настройка регуляторов DPR, AFP

Обзор регуляторов давленияСкачать

Обзор регуляторов давления

Регулятора Давления Топлива (РДТ): признаки неисправности и способы проверкиСкачать

Регулятора Давления Топлива (РДТ): признаки неисправности и способы проверки

Где установить клапан избыточного давления.Скачать

Где установить клапан избыточного давления.
Поделиться или сохранить к себе:
Технарь знаток