Как рассчитать объем усеченного цилиндра формула

Авто помощник

Содержание
  1. Как рассчитать, вычислить объём цилиндра? Что нужно для этого?
  2. Объем цилиндра
  3. Формула для вычисления объема усеченного цилиндра
  4. Объем цилиндра
  5. Объем правильного цилиндра через радиус и высоту цилиндра
  6. Формулы и калькулятор для вычисления объема цилиндра через площадь основания и высоту цилиндра
  7. Формулы и калькулятор для вычисления объема цилиндра через диаметр основания
  8. Объем цилиндрической полости
  9. Поверхности цилиндра
  10. Сечения цилиндра
  11. Что такое объем
  12. Калькулятор развертки усеченного плоскостью цилиндра онлайн
  13. Обозначения
  14. Введите радиус или диаметр *:
  15. Введите высоты * и (или) угол:
  16. Округление:
  17. Построение развёртки:
  18. Графики
  19. Формулы
  20. Калькулятор объема цилиндра в м3
  21. Объем цилиндра по высоте и радиусу
  22. Объём цилиндра через площадь основания и высоту
  23. Где применяется программа
  24. Объем цилиндра — формулы и примеры расчетов
  25. Как найти объем цилиндра
  26. Формула объема цилиндра через диаметр
  27. Объем полого цилиндра
  28. Примеры задач с решениями
  29. Задача №1
  30. Задача №2
  31. Задача №3

Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Как рассчитать, вычислить объём цилиндра? Что нужно для этого?

Цилиндром называется геометрическое тело, образованное путем вращения прямоугольника вокруг его стороны (преимущественно большей). Круги, лежащие в основании, конгруэнтные – соразмерные, равные.

Поверхность тела имеет криволинейную форму – цилиндрическую. Рассмотрим, как рассчитать объем цилиндра: полного и усеченного при наличии разных исходных данных. Развертка геометрического тела представлена:

  • прямоугольником с шириной, равной высоте геометрического тела (H);
  • длиной, равной образующей или радиусу нижней поверхности: c = πD = 2πr.

Как рассчитать объем усеченного цилиндра формула

Видео:Цилиндр - расчёт площади, объёма.Скачать

Цилиндр - расчёт площади, объёма.

Объем цилиндра

Объемом называется характеристика ограниченного геометрическим телом пространства. Показывает, сколько места занимает тело или сколько жидкости внутрь него можно залить. Близкие по значению слова – емкость, вместимость.

Существует несколько формул, позволяющих найти объем цилиндра; какая подойдет, зависит от исходной информации.

  • π – число «Пи», равное приблизительно 3,1415;
  • r – радиус круга;
  • h – высота призмы или длина стороны прямоугольника, вокруг которой он вращался для образования цилиндра.

V=\pi \frac или \frac \pi d^2h, где:

  • d – диаметр геометрического тела.

Как рассчитать объем усеченного цилиндра формула

Рассмотрим, как вычислить объем цилиндра на практике, если известны его:

  • радиус: r = 5 см;
  • высота: h = 13 см.

Подставляем значения в формулу:

V = π * 5 2 * 13 = π * 25 * 13 = 325 π.

Если нужно реальное число, вместо π в формулу подставим его округленное значение 3,1415.

V = 325 * 3,1415 ≈ 1020,98 ≈ 1021 см 3 .

В случае, когда дан диаметр круга, его придется разделить на два для получения радиуса: r= \frac d или разделить на четыре после поднесения к квадрату; r= (\frac d) =\frac d^2.

Видео:Объём цилиндраСкачать

Объём цилиндра

Формула для вычисления объема усеченного цилиндра

Усеченным называется цилиндр, часть которого отрезана плоскостью, пролегающей не параллельно нижней плоскости.

Как рассчитать объем усеченного цилиндра формула

Формула объема усеченного цилиндра следующая:

здесь h1 b h2 – наименьшая и наибольшая высоты геометрического тела.

Как рассчитать объем усеченного цилиндра формула

После подстановки значений получится выражение:

Первый: воспользуемся формулой V= \pi r^2 *\frac . Для этого определим радиус нижней плоскости.

r = \frac d= \frac 10=5 см.
V=\pi r^2 *\frac = \pi *5^2* \frac = 25 \pi * 20 = 500 \pi \approx 1570,75 см 3 .

Второе решение – подставим диаметр в формулу:

V = \pi \frac * \frac = \pi *\frac * \frac = \pi * \frac * \frac = 500 \pi \approx 1570,75 см 3 .

Зная высоту и радиус или диаметр основания тела, его вместительность высчитывается в несколько действий.

Видео:11 класс, 32 урок, Объем цилиндраСкачать

11 класс, 32 урок, Объем цилиндра

Объем цилиндра

Объем цилиндра, формулы и калькулятор для вычисления объема цилиндра и площади его поверхностей, а также необходимая теория о характеристиках цилиндра.

Видео:Объем цилиндра.Скачать

Объем цилиндра.

Объем правильного цилиндра через радиус и высоту цилиндра

Видео:11 класс. Геометрия. Объем цилиндраСкачать

11 класс. Геометрия. Объем цилиндра

Формулы и калькулятор для вычисления объема цилиндра через площадь основания и высоту цилиндра

Как рассчитать объем усеченного цилиндра формула

Видео:Объем цилиндраСкачать

Объем цилиндра

Формулы и калькулятор для вычисления объема цилиндра через диаметр основания

Как рассчитать объем усеченного цилиндра формула

Видео:Объем конуса. Объем усеченного конуса.Скачать

Объем конуса. Объем усеченного конуса.

Объем цилиндрической полости

Как рассчитать объем усеченного цилиндра формула

Объем полости в виде цилиндра равен объему цилиндра, который извлечен из данной полости для ее образования. То есть для вычисления цилиндрической полости можно воспользоваться формулами и калькулятором для расчета простого правильного цилиндра в зависимости от известных исходных данных.

Читайте также: Цилиндр 60мм что это

На картинке продемонстрирована цилиндрическая полость, образованная в теле путем извлечения из него цилиндра. Объем извлеченного цилиндра и объем образованной полости равны.

Нужно отметить один важный момент. Несмотря на равенство объемов извлеченного цилиндра и образованной полости, площади поверхностей данных объектов будут отличаться, так как у образованной цилиндрической полости отсутствует верхняя поверхность. То есть суммарная площадь поверхности образованной цилиндрической полости будет меньше суммарной площади извлеченного цилиндра на одну площадь основания цилиндра.

Правильный цилиндр – это цилиндр, где угол между образующими боковой поверхности и основанием цилиндра равен 90 градусов.

Неправильный или наклонный цилиндр – это цилиндр, где угол между образующими боковой поверхности и основанием цилиндра отличается от 90 градусов.

Рассмотрим правильный цилиндр.

Цилиндр – это тело, образованное вращением прямоугольника вокруг одной из его сторон. Тело цилиндра ограничено двумя кругами, называемыми основанием цилиндра и боковой цилиндрической поверхностью, которая в развертке представляет собой прямоугольник

Цилиндр можно так же описать как тело, состоящее из двух равных кругов, не лежащих в одной плоскости и параллельных между собой, и отрезков, соединяющих все точки одной окружности, с соответствующими точками другой окружности. Данные отрезки называются образующими цилиндра.

Радиус основания цилиндра, является радиусом цилиндра.

Ось цилиндра – это прямая, соединяющая центра оснований цилиндра.

Высота цилиндра – это перпендикуляр, опущенный от одного основания цилиндра к другому.

Видео:Объем цилиндра.Скачать

Объем цилиндра.

Поверхности цилиндра

Как рассчитать объем усеченного цилиндра формула

Наружную поверхность цилиндра можно условно разделить на три отдельные поверхности: верхняя, нижняя и боковая.

Верхняя и нижняя поверхности цилиндра имеют форму круга и равны между собой.

Боковая поверхность цилиндра имеет форму прямоугольника. Чтобы это наглядно представить, возьмем боковую наружную поверхность цилиндра и мысленно сделаем вертикальный разрез по образующей цилиндра. Далее развернем поверхность на плоскость. В результате увидим, что боковая поверхность имеет форму прямоугольника (см. на картинке).

Видео:Объем усеченного конуса. Практическая часть. 11 класс.Скачать

Объем усеченного конуса. Практическая часть. 11 класс.

Сечения цилиндра

Как рассчитать объем усеченного цилиндра формула

Как рассчитать объем усеченного цилиндра формула

При сечении цилиндра плоскостью, проходящей через оба основания цилиндра под углом в 90 градусов, всегда получатся прямоугольная фигура .

Как рассчитать объем усеченного цилиндра формула

При сечении цилиндра плоскостью, проходящей через оба основания цилиндра под углом отличным от 90 градусов, получатся фигура, похожая на прямоугольник , но две боковые стороны которого будут являться кривыми линиями.

Как рассчитать объем усеченного цилиндра формула

Если секущая поверхность проходит параллельно основаниям цилиндра, то сечением будет круг .

Как рассчитать объем усеченного цилиндра формула

Если секущая поверхность проходит через боковую поверхность, но при этом не параллельна основанию цилиндра, то в сечении получается эллипс .

Как рассчитать объем усеченного цилиндра формула

Если секущая поверхность проходит через одно основание цилиндра и боковую поверхность, то в сечение будет фигура в виде половины эллипса .

Видео:Объем цилиндраСкачать

Объем цилиндра

Что такое объем

Объем тела (геометрической фигуры) – это количественная характеристика, характеризующая количество пространства, занимаемого телом. Объем выражается в кубических единицах измерения, например: мм 3 , см 3 , мл 3 .

Формула вычисления объема цилиндра часто применяются при расчете массы различных цилиндров, например, прутков, заготовок и т.п. Для вычисления массы, необходимо вычисленный объем цилиндра умножить на плотность материала из которого цилиндр.

Читайте также: Прихватило поршень в цилиндре

Так же, вычислить объём цилиндра иногда требуется для определения полости в виде цилиндра (цилиндрическая полость). В данном случае объём полости будет равен объёму цилиндра, который полностью занимает эту полость.

Объем и площадь других видов цилиндров рассмотрен в статьях:

Видео:Как найти объем. Принцип Кавальери | Ботай со мной #050 | Борис Трушин |Скачать

Как найти объем. Принцип Кавальери | Ботай со мной #050 | Борис Трушин |

Калькулятор развертки усеченного плоскостью цилиндра онлайн

Как рассчитать объем усеченного цилиндра формула

Видео:Усеченный конус. 11 класс.Скачать

Усеченный конус. 11 класс.

Обозначения

  • R — радиус основания цилиндра;
  • D — диаметр основания цилиндра;
  • h — средняя высота усечённого цилиндра;
  • h1 — наименьшая высота усечённого цилиндра;
  • h2 — наибольшая высота усечённого цилиндра;
  • α — угол сечения, град.
  • X1 .. n — координаты для построения развёртки по оси X;
  • Y1 .. n — координаты для построения развёртки по оси Y;

Числовые значения в таблице заполняются числом (5; 5.16; -3.12), либо математическим выражением (5/7; (1-5)*2.13)

Введите радиус или диаметр *:

Введите высоты * и (или) угол:

Без макс. и мин. высоты можно посчитать только площади боковой поверхности и основания и объём

Или введите одну из высот и угол сечения (рис.)

Округление:

Построение развёртки:

Видео:Объем цилиндра. Урок 13. Геометрия 11 классСкачать

Объем цилиндра. Урок 13. Геометрия 11 класс

Графики

Чертится развертка усеченного плоскостью цилиндра, как показано на рисунке:

Как рассчитать объем усеченного цилиндра формула

Видео:Объем усеченного конуса. Практическая часть. 11 класс.Скачать

Объем усеченного конуса. Практическая часть. 11 класс.

Формулы

Формула для вычисления значений Y:

Yi = D * tg(α) * sin (i * (180 / n)) , здесь: i — номер точки, α — угол сечения, n — количество точек развертки, D — диаметр цилиндра;

Формула для вычисления значений X:

Xi = ((π * R 2 ) / n) * i , здесь: i — номер точки, α — угол сечения, n — количество точек развертки, R — радиус цилиндра, π — число Пи (прим. 3.14);

Видео:Задание 38. Как построить УСЕЧЕННЫЙ ЦИЛИНДР. Построение НВ фигуры сечения. Часть 1Скачать

Задание 38. Как построить УСЕЧЕННЫЙ ЦИЛИНДР.  Построение НВ фигуры сечения. Часть 1

Калькулятор объема цилиндра в м3

Цилиндр – это объемное тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, которые ее пересекают. Цилиндр (от греческого «kulindros» — ролик, каток) относится к основным геометрическим фигурам. В элементарных математических трактовках, он определяется как трехмерное тело. Объем цилиндра – один из базовых параметров, который необходимо уметь вычислять каждому человеку. Формула применяется во многих сферах промышленности, а также в строительстве, архитектуре, механике, программировании.

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Объем цилиндра по высоте и радиусу

Как рассчитать объем усеченного цилиндра формула

Узнать объем полой фигуры можно моментально, воспользовавшись удобной онлайн-программой. Сервис позволяет за секунды вычислить параметры тела и получить результаты в кубических сантиметрах, метрах, литрах. Расчет производится по двум математическим формулам:

    По высоте и радиусу: V = S х h.

Где V — объем, S — площадь, h — высота. Чтобы рассчитать объем необходимо площадь основания тела умножить на h. Следовательно, для этого необходимо знать две переменные.

Объём по площади основания и высоте: V = ∏ х R 2 х h

R – радиус, возведенный в квадрат. От первой формулы, расчет отличается тем, что сначала необходимо найти значение радиуса. Для этого диаметр делится на 2 или применяется формула S/2 х ∏ х H. ∏ — константа 3,14 (отношение длины окружности к диаметру).

Видео:Объем цилиндра. Практическая часть. 11 класс.Скачать

Объем цилиндра. Практическая часть. 11 класс.

Объём цилиндра через площадь основания и высоту

Как рассчитать объем усеченного цилиндра формула

Программа позволяет определить объем тела по обеим формулам. Для этого необходимо только подставить цифры в соответствующие строки и нажать кнопку рассчитать. Пошаговая инструкция вычисления базовых показателей фигуры на калькуляторе по высоте и радиусу:

  • в графе «h» ввести длину заданной фигуры, рядом выбрать метрику – в миллиметрах, сантиметрах, метрах;
  • в строке «r» ввести радиус тела и выбрать меру длины (мм, см, м);
  • в графе «Результат» определить, в чем будет выведен V – кубах, литрах.

Например, длина фигуры составляет 1,6 метра, радиус 25 сантиметров. Объем равен 314.2 литров, 314200 куб. см или 0.314 куб. м. Результат выводится моментально, с точностью до тысячной. Правильность вычисления зависит только от достоверности исходных данных.

Читайте также: Пыльник тормозного цилиндра камри

Где применяется программа

Сервис разработана для всех пользователей, чья профессиональная деятельность предполагает решение математических задач. Калькулятор будет полезен школьникам 5-9 классов, учащимся 11 классов в подготовительном процессе к ЕГЭ и контрольным срезам, а также родителям для проверки правильности решения задач.

С помощью сервиса можно решить типичные тестовые задания школьной программы, подставляя известные значения и не забывая выставлять метрические параметры (в кубических сантиметрах, кубометрах, миллиметрах, литрах). Например:

    Дан цилиндр, с площадью основания 58,3 см 2 и высотой 7 см. Чтобы посчитать V следует воспользоваться расчетом через площадь и высоту.

Решение: V = 58,3 см 2 х 7 см = 408.1 см³ или 0.408 л.

Вычисление: перед использованием программы следует определить радиус основания – 16см/2 = 8 см. Затем значения подставить в нужные поля. Расчет производится на основании формулы V = 3,14 х 8 2 х 11 см = 2211.968 см³.

Следует учитывать, что параметры полого горизонтального, наклонного, косого, кругового, равностороннего цилиндров вычисляются с использованием дополнительных формул.

Видео:Объем цилиндра. Практическая часть. 11 класс.Скачать

Объем цилиндра. Практическая часть. 11 класс.

Объем цилиндра — формулы и примеры расчетов

Как найти объем цилиндра? Любой грамотный человек обязан отличить радиус от диаметра, знать, что такое высота, помнить основные формулы геометрии и уметь рассчитать объем шара или куба.

Практическое использование геометрических формул в повседневной жизни очень высоко. Рассчитать объем в кубических метрах перевозимого груза транспортной компанией, пропускную способность трубы под домом и многое другое — во всех этих и подобных им случаях поможет геометрия.

Видео:усеченный цилиндр-ортогональные проекции-изометрия-разверткаСкачать

усеченный цилиндр-ортогональные проекции-изометрия-развертка

Как найти объем цилиндра

При упоминании о цилиндре на ум приходит классический головной убор. Кроме него в окружении можно встретить много разновидностей этой фигуры.

В теории — это тело, которое ограничено цилиндрической поверхностью и пересекающими её параллельными плоскостями.

Как рассчитать объем усеченного цилиндра формула

Рассчитать его объем возможно следующим образом:

Как видите, формула проста и прозрачна, и если обывателю нужно, как вариант, определить объем цистерны воды, можно смело ее использовать. Хотя, если возникают сомнения в правильности расчетов, для этой цели можно использовать калькулятор и определить объем онлайн.

Формула объема цилиндра через диаметр

К сожалению, случается, что при расчете объема фигуры известны не все размеры. Так, например, может не быть данных о радиусе.

Как рассчитать объем усеченного цилиндра формула

В данном случае, если знать диаметр или иметь возможность его измерить, можно воспользоваться следующей формулой:

Объем полого цилиндра

Расчет полого цилиндра нужен, когда необходимо, например, рассчитать вес полой трубы. Ее масса равна произведению плотности материала и объема.

Как рассчитать объем усеченного цилиндра формула

Примеры задач с решениями

Задача №1

Высота бочки с водой равна 3 метрам, радиус составляет 0,75 метра. Рассчитать в литрах, сколько нужно жидкости, чтобы заполнить емкость наполовину?

Как рассчитать объем усеченного цилиндра формула

Задача №2

В цехе подготовили заготовку цилиндра. Диаметр основания равен высоте и составляет 20 см. Нужно найти объем заготовки.

Как рассчитать объем усеченного цилиндра формула

Задача №3

На производстве нужно изготовить две трубы с двумя равными поверхностями. Внешний радиус первой трубы равен 5см, а внутренний 4 см, высота 200 см. Внутренний радиус второй равен 3 см.

Сколько понадобится материала для изготовления труб?

Как рассчитать объем усеченного цилиндра формула

Поделиться или сохранить к себе:
Технарь знаток