Мы продолжаем серию статей по разбору основных характеристик видеокарты, и на очереди у нас: пропускная способность памяти, а также прямо влияющий на неё показатель – ширина шины памяти видеокарты.
- Ширина шины или сколько бит «нужно»
- Пропускная способность памяти
- Как рассчитать пропускную способность шины памяти?
- Как рассчитать пропускную способность памяти видеокарты?
- Как посчитать пропускную способность памяти?
- Что такое ширина шины памяти?
- Что такое шина в видеокарте?
- Что такое эффективная частота памяти видеокарты?
- Как влияет разрядность шины памяти видеокарты?
- Как рассчитать пропускную способность процессора?
- Как определить пропускную способность шины?
- Что значит DIMM в оперативной памяти?
- Что лучше 128 или 256?
- Как узнать сколько у меня бит на видеокарте?
- Для чего предназначена шина памяти?
- Как определить тип шины видеокарты?
- Что такое разрядность шины?
- Что такое разрядность шины данных?
- Вы спрашивали: Как рассчитать пропускную способность шины процессора?
- Как посчитать пропускную способность процессора?
- Как рассчитать пропускную способность оперативной памяти?
- Какая шина обладает самой высокой тактовой частотой?
- Что такое пропускная способность простыми словами?
- Как определить пропускную способность шины?
- Как узнать пропускную способность оперативной памяти AIDA64?
- Что обеспечивает стандарт шины?
- Какие шины данных вы знаете?
- Как работает шина данных?
- Как определить пропускную способность?
- Что понимается под пропускной способностью порта?
- BIOS: изменение частоты работы процессора
- Front Side Bus
- Системная шина — что это?
- Влияние на производительность компьютера
- Частота процессора
- Память
- Контроллер памяти в системном контроллере
- Периферийные шины
- Оверклокинг в массы!
- Способы разгона процессора
- Разгон утилитами.
- Автоматический разгон средствами BIOS
- Разгон пальчиками из BIOS
- HT Frequency
- Возможные значения:
- Описание:
- Зачем разгонять процессор
Видео:03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать
Ширина шины или сколько бит «нужно»
Ширина шины памяти – важнейший параметр, который косвенно влияет на общую производительность видеокарты. Сама по себе шина – это канал, соединяющий память и графический процессор видеокарты. А от ширины шины зависит количество данных, которое может быть передано графическому процессору и обратно в память за единицу времени. Соответственно, чем больше ширина шины видеопамяти, тем лучше. Рост производительности особенно заметен в требовательных играх, которые подкреплены утяжелением в виде максимального сглаживания и анизотропной фильтрации .
Теперь, давайте рассмотрим несколько популярных классов «битности» шин памяти:
64 бита — довольно популярный класс видеокарт бюджетного сегмента рынка. Видеокарты с такой шиной позиционируются для «облагораживания» бюджетных систем (но и то, там зачастую царят интегрированные решения), а также домашних ПК с нетребовательными задачами к графической производительности системы. Особенно смешно смотрятся такие видеокарты с большим объёмом видеопамяти на борту.
128 бит – средний класс. Изредка, можно увидеть в бюджетных видеокартах, и очень часто в видеокартах middle-сегмента. Зачастую, такие видеокарты пригодны для полноценных домашних систем, с довольно широкими игровыми задачами, но часть игр всё равно будет «неподъёмной» для данного класса.
256 и 384 бит – топовый класс. Зачастую, «идёт» в сочетании с отменными частотными показателями, как памяти, так и ядра, безусловно, – это максимальная игровая производительность для всего и сразу.
Но, хотелось бы подчеркнуть, что данная классификация является очень и очень условной, потому что нельзя оценивать видеокарту по одной лишь ширине шины памяти. К тому же, сама по себе «битность», влияет на производительность лишь с жёсткой зависимостью от частоты видеопамяти. Эти два параметра рассчитывают пропускную способность памяти видеокарты (ПСП).
Поэтому, чтобы уверенно говорить относительно оптимальной величины шины, нужно рассматривать всё в комплексе, то есть, саму ПСП. Чем мы сейчас и займёмся.
Видео:Отключаем поэтапно память у RTX 3090 и 3060 и измеряем разницу в производительности.Скачать
Пропускная способность памяти
Как уже говорилось выше, данный показатель зависит от двух параметров: частоты памяти и ширины шины.
С помощью нехитрой формулы можно найти пропускную способность памяти, к примеру, какой-нибудь из видюшек на чипе Radeon HD 7970.
Возьмем модель с эффективной частотой памяти 6000 МГц и шириной шины 384 бита (48 байт если перевести). ПСП= эффективная частота памяти х ширину шины памяти = 6000 х 48 = 288 Гбайт/с. Величину ПСП также можно посмотреть с помощью специальных программ, к примеру, GPU-z.
Также, предлагаю ознакомиться с довольно интересной шкалой актуальности ПСП современных видеокарт. Конечно, тут тоже всё очень неоднозначно — ведь «не одной лишь ПСП живём», но всё же, вполне логичную зависимость можно отследить:
Какая же ширина шины оптимальна? Ответ на данный вопрос для каждого случая будет отличаться. Во-первых, нужно отталкиваться от задач, которые будут выполняться с помощью будущей системки. Во-вторых, необходимо помнить про баланс в параметрах видеокарты. Поэтому для определенной конфигурации, должна быть подобрана видеокарта с определенной шириной шины и другими показателями. И зависят они от задач и только от них.
ПСП на пару с шириной шины, не сделают «погоды», если видюшка укомплектована слабым графическим процессором , с плохими частотными показателями. GPU просто не сможет «переваривать» те объёмы данных, которые буду поступать по более быстрой шине.
Поэтому, как итог, можно еще раз смело напомнить: баланс и еще раз баланс!
Видео:Влияние шин PCI-e и внутренней шины видеокарты на производительностьСкачать
Как рассчитать пропускную способность шины памяти?
Для определения пропускной способности шины необходимо умножить тактовую частоту шины на ее разрядность. Например, для 16-разрядной шины ISA пропускная способность определяется так: (16 бит — 8,33 МГц) : 8 = (133,28 Мбит/с) : 8 = 16,66 Мбайт/с.
Видео:Как узнать сколько памяти поддерживает материнкаСкачать
Как рассчитать пропускную способность памяти видеокарты?
Как посчитать пропускную способность видеопамяти GDDR5?
- Поделите ширину интерфейса памяти на восемь, чтобы получить ее значение в байтах. Она измеряется в битах, и может составлять от 64 до 512 бит в стандартных видеокартах.
- Полученный результат (8 – 64 байта) умножьте на частоту работы памяти GDDR5 VRAM (в МГЦ).
- Далее полученную цифру умножьте на два и поделите на 1000.
Видео:Распределение линий PCI-Express в компьютереСкачать
Как посчитать пропускную способность памяти?
Пропускная способность Это — комплексный показатель возможностей RAM, который рассчитывается как произведение объема данных, передаваемых за один такт, на частоту системной шины. Чтобы выяснить пропускную способность, нужно посмотреть маркировку модуля. Например, чипу DDR4-3200 соответствует модуль PC4-25600 (таблица).
Видео:Виды видеопамяти и сколько её нужно? Какая нужна шина?Скачать
Что такое ширина шины памяти?
64, 128, 256, 512, 1024, 2048, 4096 bit. Шина памяти видеокарты – это канал соединяющий память и графический процессор видеокарты. От ширины шины памяти зависит, сколько данных обработает видеокарта за единицу времени. Этот параметр один из главных, который влияет на производительность видеокарты и на ее цену.
Видео:пропускная способность шиныСкачать
Что такое шина в видеокарте?
Ширина шины или сколько бит «нужно»
Сама по себе шина – это канал, соединяющий память и графический процессор видеокарты. А от ширины шины зависит количество данных, которое может быть передано графическому процессору и обратно в память за единицу времени. Соответственно, чем больше ширина шины видеопамяти, тем лучше.
Видео:Шины ввода-выводаСкачать
Что такое эффективная частота памяти видеокарты?
Эффективная частота — удвоенная частота шины модуля. Как можно видеть, реальная частота памяти составляет 1900 МГц, в то время как эффективная в 2 раза больше — 3800 МГц, потому что за один такт теперь поступает вдвое больше данных.
Видео:🔧Проверь свою ОПЕРАТИВНУЮ ПАМЯТЬ, она работает не на все 100!Скачать
Как влияет разрядность шины памяти видеокарты?
Ширина шины является важным параметром в производительности видеокарты. Измеряется в битах. Большая битность шины памяти позволяет передавать большее количество информации в единицу времени из видеопамяти в графический процессор и обратно, что обеспечивает большую производительность видеокарты.
Видео:Увеличение пропускной способности каналов связи в IP-видеонаблюденииСкачать
Как рассчитать пропускную способность процессора?
Теоретическая максимальная пропускная способность памяти для процессоров Intel Core серии X может быть рассчитана путем умножения частоты памяти (одна половина с удвоенной скоростью передачи данных X 2), умноженная на количество байт шириныи умноженное на количество каналов , поддерживаемых процессором.
Видео:Разгон кольцевой шины и кэша L3 процессораСкачать
Как определить пропускную способность шины?
Второй характеристикой шины является пропускная способность, которая определяется количеством бит информации, передаваемых по шине за секунду. Для определения пропускной способности шины необходимо умножить тактовую частоту шины на ее разрядность.
Видео:Всё о видеокартах за 11 минутСкачать
Что значит DIMM в оперативной памяти?
DIMM (англ. Dual In-line Memory Module, двухсторонний модуль памяти) — форм-фактор модулей памяти DRAM. Данный форм-фактор пришёл на смену форм-фактору SIMM. … Модуль SO-DIMM предназначен для использования в ноутбуках или в качестве расширения памяти на плате, поэтому отличается уменьшенным габаритом.
Видео:Как узнать какой порт SATA2 или SATA3 в ноутбукеСкачать
Что лучше 128 или 256?
Наибольшей популярностью пользуются шины памяти 128 bit. Если у видеокарты шина 256 бит, частота памяти 2200 Мгц, то пропускная способность равна: 256 бит/8 * 2200 Мгц = 70.4 GB/s.
Видео:Системная шина персонального компьютера ISAСкачать
Как узнать сколько у меня бит на видеокарте?
Как узнать сколько бит видеокарта? Если у вас возникает потребность узнать характеристики своей видеокарты или выяснить детальные параметры ускорителя – вам поможет утилита GPU-Z.
Видео:ОБЪЯСНЯЕМ PCI Express 4.0Скачать
Для чего предназначена шина памяти?
Шина памяти предназначена для передачи информации между процессором и основной памятью системы. … Память, работающая с той же частотой, что и шина процессора, позволяет отказаться от расположения внешней кэш-памяти на системной плате.
Видео:Почему видеокарта, например, вместо PCIe x16 3.0 работает на PCIe x16 1.1Скачать
Как определить тип шины видеокарты?
Открываем АИДУ, нажимаем на пункт «Отображение». Это меню будет находиться в левой части окна программы. В выпадающем списке характеристик нажимаем на кнопку «Графический процессор». После этого в главном окне программы появятся все характеристики вашей видеокарты, тип видеопамяти в том числе.
Видео:Как узнать PCI Express на компьютере или ноутбуке?Скачать
Что такое разрядность шины?
Разрядность (битность) в информатике — количество разрядов (битов) электронного (в частности, периферийного) устройства или шины, одновременно обрабатываемых этим устройством или передаваемых этой шиной.
Видео:Как узнать частоту оперативной памяти компьютера или ноутбукаСкачать
Что такое разрядность шины данных?
Разрядность шины данных определяется разрядностью процессора, т. е. количеством двоичных разрядов, которые процессор обрабатывает за один такт. … За 25 лет, со времени создания первого персонального компьютера (1975г.), разрядность шины данных увеличилась с 8 до 64 бит.
Видео:Как увеличить производительность (пропускную способность) ПКСкачать
Вы спрашивали: Как рассчитать пропускную способность шины процессора?
Для определения пропускной способности шины необходимо умножить тактовую частоту шины на ее разрядность. Например, для 16-разрядной шины ISA пропускная способность определяется так: (16 бит — 8,33 МГц) : 8 = (133,28 Мбит/с) : 8 = 16,66 Мбайт/с.
Видео:Как выбрать видеокарту. Или почему шина 256 бит - не рулит. (см. описание)Скачать
Как посчитать пропускную способность процессора?
Теоретическую максимальную пропускную способность памяти для Intel Core процессоров серии X можно рассчитать путем умножения тактовой частоты памяти (в два раза больше, чем у двух скоростей передачи данных x 2),умноженной на число 16 bytesширины и умноженной на количество каналов, поддерживаемых процессором.
Как рассчитать пропускную способность оперативной памяти?
Чтобы выяснить пропускную способность, нужно посмотреть маркировку модуля. Например, чипу DDR4-3200 соответствует модуль PC4-25600 (таблица). 25600 — это пропускная способность данной ОЗУ. Чем она выше, тем быстрее работает вся сборка.
Какая шина обладает самой высокой тактовой частотой?
Система Pentium 4 (Socket 423 или Socket 478), созданная на основе hub-архитектуры, показана на рисунке ниже. Особенностью этой конструкции является шина процессора с тактовой частотой 400/533/800 МГц и пропускной способностью соответственно 3200/4266/6400 Мбайт/с. Сегодня это самая быстродействующая шина.
Что такое пропускная способность простыми словами?
По сути, пропускная способность — это способность передавать данные, другими словами, это понятие определяет, как много данных может быть перенесено из одной точку в другую за определённый период времени.
Как определить пропускную способность шины?
Пропускная способность измеряется в мегабайтах в секунду (Мбайт/с) или в мегабитах в секунду (Мбит/с). Здесь важно не путать эти два значения, поскольку скорость в мегабайтах в восемь раз больше скорости в мегабитах (1 байт = 8 бит). Существует два типа шин: последовательные и параллельные.
Как узнать пропускную способность оперативной памяти AIDA64?
Алгоритм, по которому выполняется проверка оперативной памяти в AIDA64, следующий:
- Запуск AIDA64.
- Выбор пункта «Системная плата».
- Переход в раздел «Память». Здесь можно получить информацию о размере ОЗУ, проценте ее занятости.
- Переход в раздел «SPD». Здесь можно узнать частоту оперативной памяти.
Что обеспечивает стандарт шины?
Шина SCSI (Small Computer System Interface) обеспечивает скорость передачи данных до 320 Мбайт/с и предусматривает подключение к одному адаптеру до восьми устройств: винчестеры, приводы CD-ROM, сканеры, фото- и видеокамеры. Отличительной особенностью шины SCSI является то, что она представляет собой кабельный шлейф.
Какие шины данных вы знаете?
Как работает шина данных?
Шина данных предназначена для пересылки кодов обрабатываемых данных, а также машинных кодов команд между устройствами ЭВМ. По шине данных передается информация в микропроцессор и из него. Шина адреса несет адрес (номер) той ячейки памяти или того порта ввода-вывода, который взаимодействует с микропроцессором.
Как определить пропускную способность?
д.; в оптике — безразмерной величиной. В информатике определение пропускной способности обычно применяется к каналу связи и определяется максимальным количеством переданной или полученной информации за единицу времени. Пропускная способность — один из важнейших с точки зрения пользователей факторов.
Что понимается под пропускной способностью порта?
Под пропускной способностью понимается максимальное количество тонн груза, которое порт может в соответствии со своими производственными возможностями погрузить на суда и выгрузить с судов за определенный период.
BIOS: изменение частоты работы процессора
Front Side Bus
Front Side Bus (FSB, системная шина) — шина, обеспечивающая соединение между x86/x86-64-совместимым центральным процессором и внутренними устройствами.
Как правило, современный персональный компьютер на базе x86- и x64-совместимого микропроцессора устроен следующим образом:
- Микропроцессор через FSB подключается к системному контроллеру, который обычно называют «северным мостом», (англ. Northbridge).
- Системный контроллер имеет в своём составе контроллер ОЗУ (в некоторых современных персональных компьютерах контроллер ОЗУ встроен в микропроцессор), а также контроллеры шин, к которым подключаются периферийные устройства.
Получил распространение подход, при котором к северному мосту подключаются наиболее производительные периферийные устройства, например, видеокарты с шиной PCI Express x16, а менее производительные устройства (микросхема BIOS’а, устройства с шиной PCI) подключаются к «южному мосту» (англ. Southbridge), который соединяется с северным мостом специальной шиной. Набор из «южного» и «северного» мостов называют набором системной логики, но чаще применяется калька с английского языка «чипсет» (англ. chipset).
Читайте также: Ли шин йонг подтягивание рекорд
Таким образом, FSB работает в качестве магистрального канала между процессором и чипсетом.
Некоторые компьютеры имеют внешнюю кэш-память, подключённую через «заднюю» шину (англ. back side bus), которая быстрее, чем FSB, но работает только со специфичными устройствами.
Каждая из вторичных шин работает на своей частоте (которая может быть как выше, так и ниже частоты FSB). Иногда частота вторичной шины является производной от частоты FSB, иногда задаётся независимо.
Системная шина — что это?
Здравствуйте, уважаемые читатели блога Pc-information-guide.ru. Очень часто на просторах интернета можно встретить много всякой компьютерной терминологии, в частности — такое понятие, как «Системная шина». Но мало кто знает, что именно означает этот компьютерный термин. Думаю, сегодняшняя статья поможет внести ясность.
Системная шина (магистраль) включает в себя шину данных, адреса и управления. По каждой их них передается своя информация: по шине данных — данные, адреса — соответственно, адрес (устройств и ячеек памяти), управления — управляющие сигналы для устройств. Но мы сейчас не будем углубляться в дебри теории организации архитектуры компьютера, оставим это студентам ВУЗов. Физически магистраль представлена в виде многочисленных дорожек (контактов) на материнской плате.
Я не случайно на фотографии к этой статье указал на надпись «FSB». Дело в том, что за соединение процессора с чипсетом отвечает как раз шина FSB, которая расшифровывается как «Front-side bus» — то есть «передняя» или «системная». И ее частота является важным параметром, на который обычно ориентируются при разгоне процессора, например.
Существует несколько разновидностей шины FSB, например, на материнских платах с процессорами Intel шина FSB обычно имеет разновидность QPB, в которой данные передаются 4 раза за один такт. Если речь идет о процессорах AMD, то там данные передаются 2 раза за такт, а разновидность шины имеет название EV6. А в последних моделях CPU AMD, так и вовсе — нет FSB, ее роль выполняет новейшая HyperTransport.
Итак, между чипсетом и центральным процессором данные передаются с частотой, превышающей частоту шины FSB в 4 раза. Почему только в 4 раза, см. абзац выше. Получается, если на коробке указано 1600 МГц (эффективная частота), в реальности частота будет составлять 400 МГц (фактическая). В дальнейшем, когда речь пойдет о разгоне процессора (в следующих статьях), вы узнаете, почему необходимо обращать внимание на этот параметр. А пока просто запомните, чем больше значение частоты, тем лучше.
Кстати, надпись «O.C.» означает, буквально «разгон», это сокращение от англ. Overclock, то есть это предельно возможная частота системной шины, которую поддерживает материнская плата. Системная шина может спокойно функционировать и на частоте, существенно ниже той, что указана на упаковке, но никак не выше нее.
Вторым параметром, характеризующим системную шину, является пропускная способность. Это то количество информации (данных), которая она может пропустить через себя за одну секунду. Она измеряется в Бит/с. Пропускную способность можно самостоятельно рассчитать по очень простой формуле: частоту шины (FSB) * разрядность шины. Про первый множитель вы уже знаете, второй множитель соответствует разрядности процессора — помните, x64, x86(32)? Все современные процессоры уже имеют разрядность 64 бита.
Итак, подставляем наши данные в формулу, в итоге получается: 1600 * 64 = 102 400 МБит/с = 100 ГБит/с = 12,5 ГБайт/с. Такова пропускная способность магистрали между чипсетом и процессором, а точнее, между северным мостом и процессором. То есть системная, FSB, процессорная шины — все это синонимы. Все разъемы материнской платы — видеокарта, жесткий диск, оперативная память «общаются» между собой только через магистрали. Но FSB не единственная на материнской плате, хотя и самая главная, безусловно.
Как видно из рисунка, Front-side bus (самая жирная линия) по-сути соединяет только процессор и чипсет, а уже от чипсета идет несколько разных шин в других направлениях: PCI, видеоадаптера, ОЗУ, USB. И совсем не факт, что рабочие частоты этих подшин должны быть равны или кратны частоте FSB, нет, они могут быть абсолютно разные. Однако, в современных процессорах часто контроллер ОЗУ перемещается из северного моста в сам процессор, в таком случае получается, что отдельной магистрали ОЗУ как бы не существует, все данные между процессором и оперативной памятью передаются по FSB напрямую с частотой, равной частоте FSB.
Влияние на производительность компьютера
Частота процессора
Частоты, на которых работают центральный процессор и FSB, имеют общую опорную частоту, и в конечном счёте определяются, исходя из их коэффициентов умножения (частота устройства = опорная частота * коэффициент умножения).
Память
Следует выделить два случая:
Контроллер памяти в системном контроллере
До определённого момента в развитии компьютеров частота работы памяти совпадала с частотой FSB. Это, в частности, касалось чипсетов на сокете LGA 775, начиная с 945GC и вплоть до X48.
Основная статья: Список чипсетов Intel
То же касалось и чипсетов NVIDIA для платформы LGA 775 (NVIDIA GeForce 9400, NVIDIA nForce4 SLI/SLI Ultra и др.)
Основная статья: Сравнение чипсетов Nvidia Основная статья: nForce 700 Основная статья: nForce 600
Спецификации стандартов системной шины чипсетов на сокете LGA 775 и оперативной памяти DDR3 SDRAM
Стандартное название | Частота памяти, МГц | Время цикла, нс | Частота шины, МГц | Эффективная (удвоенная) скорость, млн. передач/с | Название модуля | Пиковая скорость передачи данных при 64-битной шине данных в одноканальном режиме, МБ/с |
DDR3‑800 | 100 | 10,00 | 400 | 800 | PC3‑6400 | 6400 |
DDR3‑1066 | 133 | 7,50 | 533 | 1066 | PC3‑8500 | 8533 |
DDR3‑1333 | 166 | 6,00 | 667 | 1333 | PC3‑10600 | 10667 |
DDR3‑1600 | 200 | 5,00 | 800 | 1600 | PC3‑12800 | 12800 |
DDR3‑1866 (O.C.) | 233 (O.C.) | 4,29 (O.C.) | 933 (O.C.) | 1866 (O.C.) | PC3‑14900 (O.C.) | 14933 (O.C.) |
O.C. — в режиме overclocking (разгона)
Поскольку процессор работает с памятью через FSB, то производительность FSB является одним из важнейших параметров такой системы.
На современных персональных компьютерах, начиная с сокета LGA 1366 частоты компьютерной шины, которая называется QuickPath Interconnect, и шины памяти могут различаться.
Периферийные шины
Существуют системы, преимущественно старые, где FSB и периферийные шины ISA, PCI, AGP имеют общую опорную частоту, и попытка изменения частоты FSB не посредством её коэффициента умножения, а посредством изменения опорной частоты приведёт к изменению частот периферийных шин, и даже внешних интерфейсов, таких как Parallel ATA. На других системах, преимущественно новых, частоты периферийных шин не зависят от частоты FSB.
В системах с высокой интеграцией контроллеры памяти и периферийных шин могут быть встроены в процессор, и сама FSB в таких процессорах отсутствует принципиально. К таким системам можно отнести, например, платформу Intel LGA1156.
Оверклокинг в массы!
На протяжении развития всего рода человеческого, нашими неотъемлемыми спутниками были камни. Топоры, наконечники стрел… пирамиды в конце-концов! Один кремний чего стоит — ведь именно благодаря ему мы раздобыли огонь. Пускай не так давно, но уже во имя развития компьютерной индустрии в «бронзовом» веке люди решили терзать свои «камни» опять. С чего все началось, мы даже думать боимся. То ли еще с древних Z80, то ли поздней, на серии 286/386 процессоров, в какой то момент некая группа народа открыла для себя новое увлекательное занятие, вернее, стала основателем нового направления — оверклокинг
. Слово, собственно говоря, не наше, с английского переводится как «раскрутка». У нас определение приняло немного иной вид —
разгон
, то есть повышение производительности. О том, что это такое и как оно происходит, мы поведаем в данной статье.
С чего началось
В те славные годы, когда цены на компьютерные комплектующие буквально зашкаливали, процессоры поддавались разгону не так-то просто. Если сейчас разогнать компьютер не составляет практически никакого труда — наличие клавиатуры и соответствующего программного обеспечения позволяют сделать это буквально за несколько минут, — то тогда повышение тактовой частоты происходило с применением паяльника, перестановки джамперов и замыканием ножек у процессоров. То есть в то время разгон был доступен только избранным — смелым, самоотверженным и опытным технарям.
Но разгону поддавались не только процессоры. Следующими стали видеокарты и оперативная память, а совсем недавно энтузиасты добились повышения производительности оптической мыши.
А, собственно, ради чего мы собрались что-то делать? Давайте сложим все плюсы и минусы, дабы понять, а так ли оно нам надо? К плюсам можно отнести следующие пункты:
- Повышенная производительность еще никогда и ни кому не мешала. Её возрастающее количество точно предсказать нельзя, все зависит от используемых комплектующих. Например, прирост от разгона процессора при мощной видеокарте почти всегда повышает скорость в 3D-приложениях. Хотя, даже не ставя целью повышение производительности в играх, продуктивность компьютера в целом будет распространяться на архивирование, перекодировку, редактирование видео/звука, арифметические вычисления и другие полезные операции. А вот от «тюнинга» памяти выигрыш, скорее всего, будет не такой большой, как от разгона процессора или видеокарты.
- Многие понятия, с которыми вы познакомитесь в процессе оверклокинга, дадут бесценный опыт.
А вот и другая сторона медали:
- Есть риск погубить аппаратуру. Хотя это зависит от ваших рук, качества используемых комплектующих и, наконец, умения во время остановиться.
- Сокращение срока работы разгоняемых комплектующих. Тут, увы, ничего не поделаешь: при повышенном напряжении и весьма неслабой частоте вкупе с плохим охлаждением можно сократить срок службы «железа» раза в два. Многим это может показаться неприемлемым, но есть одна деталь: в среднем, срок работы современного процессора составляет от десяти лет. Много это или мало, каждый решает для себя сам. Мы лишь напоминаем о том, что по состоянию на сегодняшний день прогресс достиг такой скорости развития, что процессор, выпущенный два-три года назад, считается уже непозволительно устаревшим. Чего уж говорить про пять…
Спроектировав процессор, производитель создаёт целую серию (линейку) с различными его характеристиками, причём зачастую на основе одного единственного процессора. Почему, вы мне скажите, на двух одинаковых процессорах различаются частоты? Неужели вы думаете, что компания, их выпускающая, умудряется программировать каждый процессор на определенную частоту? Разумеется, есть иной способ. Частота младших процессоров линейки без проблем может достигать даже старших, более того, иногда превышая его. Но со всех сторон подстерегают скрытые проблемы, одна из которых — вопрос удачного подбора «камня»… однако это уже другая история, о которой мы расскажем в следующий раз. Потому как для дальнейшего изучения материала необходимо ознакомиться со всем терминами, которые так или иначе будут фигурировать в тексте.
(Basic Input-Output System) — Элементарная система ввода/вывода. По сути, является посредником между аппаратной и программной средами компьютера. А конкретней, она представляет собой небольшую конфигурационную программу, содержащую настройки для всего «железного» содержимого вашего компьютера. В настройки можно вносить свои изменения: например, изменять частоту процессора. Сам BIOS располагается на отдельном чипе с флэш-памятью непосредственно в материнской плате.
(Front Side Bus) — Системная или процессорная шина — это основной канал обеспечения связи процессора с остальными устройствами в системе. Системная шина также является основой для формирования частоты других шин передачи данных компьютера, вроде AGP, PCI, PCI-E, Serial-ATA, а также оперативной памяти. Именно она служит основным инструментом в повышении частоты CPU (процессора). Умножение частоты процессорной шины на процессорный множитель (CPU Multiplier) и обеспечивает частоту процессора.
, корпорация
Intel
стала применять технологию
QPB
(Quad Pumped Bus) — она же
QDR
(Quad Data Rate) — суть которой состоит в передаче четырех 64-разрядных блоков данных за такт работы процессора, т.е. с реальной частотой, например, в 200Mhz мы получаем 800Mhz эффективной.
Читайте также: Бро покурили глаза узкие теперь как шин
В тоже время у некогда конкурирующих AMD Athlon
передача идёт по обоим фронтам сигнала, в результате эффективная скорость передачи в два раза выше, чем реальная частота, 166Mhz у Athlon XP дает 333 эффективных мегагерц.
Приблизительно так же обстоят дела в линейке процессоров от AMD
— K8, (Opteron, Athlon 64, Sempron(S754/939/AM2)): шина FSB получила продолжение, теперь она является лишь опорной частотой (тактовый генератор — HTT), умножив на которую специальный множитель мы получим эффективную частоту обмена данными между процессором и внешними устройствами. Технология получила название
Hyper Transport — HT
и представляет собой особые высокоскоростные последовательные каналы с частотой синхронизации 1 ГГц при «удвоенной» скорости передачи (DDR), состоящих из двух однонаправленных шин шириной 16 бит. Максимальная скорость передачи данных составляет 4 Гбит/с. Также от тактового генератора формируется частота процессора, AGP, PCI, PCI-E, Serial-ATA. Частота памяти получается от частоты процессора, благодаря понижающему коэффициенту.
представляет собой некий «замыкатель» контактов, собранный в миниатюрном корпусе. В зависимости от того, какие именно контакты на плате замкнуты (или какие не замкнуты), система определяет собственные параметры.
(Frequency Ratio/Multiplier) позволяет добиться необходимой нам итоговой частоты процессора, оставляя при этом частоту системной шины неизменной. В настоящий момент во всех процессорах Intel и AMD (кроме Athlon 64 FX, Intel Pentium XE и Core 2 Xtreme) множитель является заблокированным, по крайне мере в сторону увеличения.
(cache) — небольшое количество очень быстрой памяти, встроенной непосредственно в процессор. Кэш оказывает значительное влияние на скорость обработки информации, так как хранит в себе данные, выполняющиеся в данный момент, и даже те, которые могут понадобиться в ближайшее время (руководит этим в процессоре блок предвыборки данных). Кэш бывает двух уровней и обозначается следующим образом:
— кэш первого уровня, наиболее быстрый и менее емкий из всех уровней, непосредственно «общается» с процессорным ядром и чаще всего имеет разделенную структуру: одну половину под данные (
L1D
), вторую — инструкции (
L1I
). Типичный объем для AMD S462 (A) и S754/939/940 процессоров составляет 128Kb, Intel S478\LGA775 — 16Kb.
— кэш второго уровня, в котором находятся данные, вытесненные из кэша первого уровня, является менее быстрым, но более емким. Типичные значения: 256, 512, 1024 и 2048Kb.
— в настольных процессорах применялся впервые в процессоре Intel Pentium 4 Extreme Edition (Gallatin) и имел емкость в 2048Kb. Также уже довольно давно нашел себе место в серверных CPU, а вскоре должен появится в новом поколении процессоров AMD K10.
— кремниевый чип, кристалл, состоящий из нескольких десятков миллионов транзисторов. Он, собственно, и является процессором — занимается выполнением инструкций и обработкой поступающих к нему данных.
— новая версия, поколение процессора с измененными характеристиками. Судя по статистике, чем больше степпинг, тем лучше разгоняется процессор, хотя и не всегда.
— MMX, 3DNow!, SSE, SSE2, SSE3 и т.д. Начиная с 1997 года, с внедрением кампанией Intel первой в истории процессоростроения инструкции MMX (MultiMedia eXtensions), оверклокеры получили еще один способ увеличения производительности. Эти инструкции являются ничем иным как концепцией SIMD (Single Instruction Many Data — «одна команда — много данных») и позволяют ни много ни мало обработку нескольких элементов данных посредством одной инструкции. Сами по себе они, разумеется, не повысят скорость обработки информации, но с поддержкой этих инструкций программами определённый прирост отмечается.
(технология изготовления) — наряду с различными оптимизациями, проводимыми с каждым новым степпингом, уменьшение техпроцесса является наиболее действенным способом по преодолению границы разгона процессора. Обозначается странным буквосочетанием «мкм», «нм». Пример: 0.13\0.09\0.065мкм или 130\90\65нм.
(Сокет) — Тип разъема процессора для установки процессора в материнскую плату. Например, S462\478\479\604\754\775\939\940\AM2 и т.п.
Иногда кампании-производители наряду с числовым наименованием используют буквенные, так например S775 — он же Socket T, S462 — Socket A. Такая видимая путаница может немного дезориентировать начинающего пользователя. Будьте внимательны.
(Synchronous Dynamic Random Access Memory) — система синхронизации динамической памяти с произвольным доступом. К данному типу относится вся оперативная память, применяемая в современных настольных компьютерах.
(Double Data Rate SDRAM) — Усовершенствованный тип SDR SDRAM с удвоенным количеством данных передаваемых за такт.
— дальнейшее развитие DDR, позволяющее достичь вдвое большую частоту внешней шины данных по сравнению с частотой микросхем DDR при равной внутренней частоте функционирования оных. Вся управляющая логика ввода/вывода работает на частоте, в два раза меньшей скорости передачи, то есть эффективная частота в два раза выше реальной. Производится по более тонкому 90-нм техпроцессу и наряду со сниженным номинальным напряжением до 1.8V (с 2.5V у DDR) потребляет меньше энергии.
Реальная и эффективная частота памяти
— с появлением DDR и DDR2 памяти в нашу жизнь вошло такое понятие как реальная частота — это частота, на которой работают данные модули. Эффективная же частота — это та, на которой память работает по спецификациям стандартов DDR, DDR2 и других. То есть с удвоенным количеством передаваемых данных за такт. Для примера: при реальной частоте DDR 200Mhz эффективная составляет 400Mhz. Поэтому в обозначениях она чаще всего значится как DDR400. Данный фокус можно рассматривать не более чем маркетинговый ход. Таким образом, нам дают понять, что, раз данных за такт передается в два раза больше, значит, и скорость в два раза выше… что далеко не так. Но для нас это не столь важно, не стоит углубляться в дебри маркетинга.
Реальная частота, MHz | Эффективная частота, MHz | Пропускная способность, Mbps |
100 | 200 | 1600 |
133 | 266 | 2100 |
166 | 333 | 2700 |
200 | 400 | 3200 |
216 | 433 | 3500 |
233 | 466 | 3700 |
250 | 500 | 4000 |
266 | 533 | 4200 |
275 | 550 | 4400 |
300 | 600 | 4800 |
333 | 667 | 5300 |
350 | 700 | 5600 |
400 | 800 | 6400 |
500 | 1000 | 8000 |
533 | 1066 | 8600 |
667 | 1333 | 10600 |
Обозначение памяти по теоретической пропускной способности — покупая память наряду с привычными обозначениями вроде DDR 400 или DDR2 800, в нашем случае можно увидеть такие наименования как PC-3200 и PC2-6400. Все это ничто иное, как обозначение одной и той же памяти (DDR 400 и DDR2 800 соответственно), но только в теоретической пропускной способности, указываемой в Mb\s. Очередной маркетинговый ход.
Обозначение памяти по времени доступа
— время, в течение которого происходит считывание информации из ячейки памяти. Обозначается в «ns» (наносекунды). Для того чтобы перевести эти значения в частоту, следует разделить 1000 на количество этих самых наносекунд. Таким образом, можно получить реальную частоту работы ОЗУ.
— задержки, возникающие при операциях с содержимым ячеек памяти, приведенные далее. Это отнюдь не все их количество, а только самые основные:
- CAS# Latency (tCL) — период между командой чтения и началом передачи данных.
- tRAS (ACTIVE to PRECHARGE command) — минимальное время между командой активации и командой закрытия одного банка памяти.
- tRCD (ACTIVE to READ or WRITE delay) — минимальное время между командой активации и командой чтения/записи.
- tRP (PRECHARGE command period) — минимальное время между командой закрытия и повторной активации одного банка памяти.
- Command rate (Command Rate: 1T/2T) — задержки командного интерфейса, происходящие из-за большого количества физических банков памяти. Ручной настройке поддается пока только на не Intel чипсетах.
- SPD (Serial Presence Detect) — чип, находящийся на модуле оперативной памяти. Содержит в себе информацию о частоте, таймингах, а также производителе и дате изготовления данного модуля.
Каким именно образом мы будем превышать номинальную частоту процессора, вы уже догадались, верно? Все просто как бублик: у нас есть системная шина (aka FSB или тактовый генератор — для AMD K8) и процессорный множитель (он же коэффициент умножения). Элементарно меняем числовые значения одного из них и на выходе получаем требуемую частоту.
Для примера: мы имеем некий процессор со стандартной частотой в 2200MHz. Начинаем думать, а почему же это производитель так пожадничал, когда в этой же линейке с таким же ядром есть модели с 2600MHz и выше? Нужно это дело поправить! Существует два способа: изменить частоту процессорной шины или изменить процессорный множитель. Но для начала, если вы не имеете даже начальных знаний в компьютерной технике и не в состоянии по одному только названию процессора определить стандартную для него частоту FSB или его множитель, советую применить более надёжный метод. Специально для этого существуют программы, позволяющие получить исчерпываемую информацию по своему процессору. CPU-Z в своём сегменте является лидером, однако есть и другие. Можно с таким же успехом использовать SiSoftware.Sandra, RightMark CPU Clock Utility. Воспользовавшись полученными программами, мы можем легко вычислить частоту FSB и множитель процессора (а заодно еще кучу ранее неизвестной, но чертовски полезной информации).
Возьмем, к примеру, процессор Intel Pentium 2.66GHz (20x133MHz) на ядре Northwood.
После нехитрых операций в виде поднятия частоты FSB, мы получаем 3420MHz.
Вот оно как! Мы уже видим, как в ваших умах закопошились извилины, умножающие немыслимые числа на чудовищные коэффициенты… не так быстро друзья! Да, вы все отлично поняли: для разгона нам понадобится либо увеличение множителя, либо частоты системной шины (а лучше всего сразу, и, главное, побольше — прим. скрытой внутренней жадности). Но не все так просто в нашей жизни, палок в колесах хватает, поэтому давайте прежде, чем приступать, ознакомимся с ними.
Вам уже известно, что большинство присутствующих на рынке процессоров имеют заблокированный множитель… ну, по крайней мере, в ту сторону, куда бы нам хотелось — в сторону увеличения. Такая возможность есть только у счастливых обладателей AMD Athlon 64 FX и некоторых моделей Pentium XE. (Варианты с раритетными Athlon XP, выпущенными до 2003 года, не рассматриваются). Данные модели практически без проблем (возней с памятью и недостаточным запасом частоты FSB у материнской платы) могут гнать свои и так уже «неслабочастотные» «камни». Разблокированный множитель в этой серии процессоров есть ничто иное, как подарок пользователям, отдавшим весьма немалые деньги. Всем остальным, кто не в состоянии тратить 1000$ на процессор, следует идти (нет, отнюдь не лесом) просто другим путем…
Повышение частоты FSB или тактового генератора. Да, это и есть наш спаситель, который практически в 90% случаев является основным инструментом для разгона. В зависимости от того, насколько давно вы приобрели свой процессор или материнскую плату, будет разниться ваша стандартная частота FSB.
Начиная с первых Athlon у AMD и Intel Pentium на S478, стандартом была 100MHz системная шина. Далее «Атлоны» перешли сначала на 133, затем 166 и в конце концов закончили свою жизнь на 200Mhz шине. Intel тоже не спала и постепенно увеличивала частоты: 133, затем сразу 200, теперь уже 266, и даже 333MHz (1333Mhz в пересчете QDR).
То есть, имея современную материнскую плату с хорошим потенциалом к увеличению частоты тактового генератора (собственно этот кварц, управляющий частотой FSB, также может обозначаться как PLL), все становится предельно просто — это увеличение самой частоты. До каких пределов и как собственно ее изменять, мы поговорим чуть позже.
Надеемся, вы не забыли что такое FSB? Нет, имеются ввиду не мегагерцы, на которых она работает, а непосредственное значение. FSB — это системная шина, связывающая процессор с другими устройствами в системе. Но в тоже время она является основой для формирования частоты других шин, таких как AGP, PCI, S-ATA ,а также оперативной памяти. И что же это значит? А значит это то, что при повышении оной мы будем автоматически повышать частоты AGP, PCI, S-ATA и «оперативки». И если повышение последней в разумных пределах только нам на руку (в настоящее время исключительно материнские платы на основе чипсета NVIDIA nForce4 SLI Intel Edition умеют разгонять процессор независимо от памяти), то вот S-ATA, PCI и AGP с PCI-E нам разгонять совершенно не нужно. Дело в том, что они довольно-таки чутко воспринимают подобные эксперименты и отвечают нам весьма неприятными последствиями. Номиналы данных шин составляют: PCI — 33.3Mhz, AGP — 66.6Mhz, SATA и PCI-E — 100Mhz. И значительно превышать их крайне не рекомендуется. Нестабильная работа того же S-ATA может привести к потере данных с вашего S-ATA диска!
Читайте также: Шины для шевроле круз 2012
То есть, это очень значительное ограничение… было. А дело вот в чем: смекнув о пользе такого просчета, некоторые производители чипсетов решили данную проблемку устранить самостоятельно. Началось все с того, что начали применяться специальные делители, автоматически переключающие шины PCI и AGP на номинал при 100, 133, 166…MHz. (и возникали такие интересные ситуации, при которых процессор был стабилен при 166Mhz, изначально работавший на 133, а вот на 165 — ни в какую!), теперь вы понимаете, почему. Но не всех этот урок научил. Далеко за примерами идти не нужно: выпущенный вначале эры Athlon 64 чипсет VIA K8T800. Имея весьма неплохую функциональность и цену, он банально не умеет фиксировать частоты PCI\AGP\S-ATA при повышении HTT. То есть, больше чем 220-230Mhz прироста по тактовому генератору вы не получите. Вот так, грустно господа. Будьте бдительны, не попадитесь на подобный чипсет (хотя он и староват уже малость).
Таким образом, мы ставим точку на этом разделе статьи и переходим к следующему. Немного рассмотрели теоретическую часть, плюс немного нюансов, которые могут попасться на вашем пути. Пора, что ли, приступать уже к делу. Заодно разбираясь по ходу, какие еще палки из колес предстоит вынимать.
Продолжение следует…
Материал подготовлен в рамках сотрудничества с DigX.ru
Способы разгона процессора
Разгон утилитами.
Разгон процессора возможен непосредственно из ОС Windows утилитами, вшитыми в системных дисках, прилагаемых к материнским платам. К примеру, утилиты Easy Tune 5 для плат Gigabyte, утилита Dual CoreCenter для MSI, Al Suite для мам ASUS, nTune и Overdrive для плат с чипсетом nVidia и AMD соответственно.
Для примера показана фирменная утилита Al Booster для ASUS. Разгон выполняется в ОС Widows all. Кроме того утилита выполняет мониторинг параметров, сообщает о возможных проблемах, отслеживает температуру процессора, показывает скорость вращения кулеров и т.д.
При возникновении проблем утилита восстанавливает прежние параметры.
Автоматический разгон средствами BIOS
Современные материнские платы снабжены специальными настройками для комплексного разгона всех составляющих компьютера. В некоторых платах Gigabyte вшиты два фиксированных значения – не разогнан/разогнан параметром Top Performance.
ASUS, параметром Overclock Options, предлагает задать степень разгона в процентах 3%, 5%, 8% и 10%.
Автоматический динамический разгон, при котором повышаются напряжение питания и рабочие частоты, только при полной загрузке процессора, при уменьшении нагрузки происходит возврат в штатный режим. Для включения такого разгона предусмотрены параметры: CPU Intelligent Accelerator (Gigabyte), Dynamic Overclocking (MSI), AI N.O.S (ASUS).
Разгон утилитами и автоматические разгоны вместе с простотой выполнения характеризуются еще и малой эффективностью и возможными нестабильностями из-за ошибок в программах.
Разгон пальчиками из BIOS
3.1.Подготовка
Прежде всего, надо войти в BIOS: при старте жать на «Del» или «F2», для доступа ко всем опциям на системных платах от Gigabyte дополнительно нажать Ctrl + F1.
В результате всех этих манипуляций взору предстанет такая картинка
Несмотря на разные версии BIOS и на то, что, одни и те же опции могут называться разными именами, можно легко отыскать то, что надо. А, надо лишь увеличить тактовую частоту CPU складывающего из произведения множителя на частоту шины.
К примеру, если частота процессора Intel Celeron D 310 равна 2,13 ГГц, множитель равен х16, а частота шины (FSB) равна 133 МГц то надо увеличить FSB, либо множитель. Допустимо увеличение обоих параметров за одну настройку.
Встречаются процессоры с заблокированным множителем и позволяющие только уменьшение множителя. Самый эффективный путь увеличения производительности процессора — увеличения частоты шины. Если кто-то в этом засомневался, то отвечу так: в компьютере все процессы взаимосвязаны и синхронизированы и увеличение частоты шины, одновременно повышается частота работы памяти и скорость обмена данными.
Здесь же есть и «оборотная сторона медали» – одновременный разгон процессора и ОЗУ может привести к преждевременному финалу настройки BIOSA. Потому что в процессоре еще остался потенциал на дальнейший разгон, а ОЗУ уже не тянет.
Сегодня, только мамы на чипсетах NVIDIA nForce4 SLI Intel Edition способны разогнать процессор независимо от памяти. Поэтому, перед разгоном надо заранее позаботиться о том, чтобы не ставили ограничении ни память и ни что-то ещё.
Ищем опцию, отвечающую за частоту работы ОЗУ. Обычно она размещена в разделе разгона и таймингам памяти (Advanced Chipset Features или просто Advanced), или в разделе (Advanced) разгона процессора, как у ASUS.
Параметр называется Memclock index value измеряемый в мегагерцах:
Он же может находится в разделе POWER BIOS Features и называться Memory Frequency, или System Memory Frequency и обозначать частоту памяти как DDR400, DDR333 или DDR266, а может PC100 или PC133.
Все эти оговорки о размещении параметра не играют роли, главное найти этот параметр и установить для него минимальное значение, для того, что бы при разгоне она осталась в допустимых пределах. Для верности можно увеличить тайминги. Все это для того, что бы отодвинуть предел стабильной работы памяти.
В большинстве случаев такой подготовки достаточно. Однако не лишним будет убедиться в том, что разгону больше ничего не помешает.
Дело в том, что вместе с повышением частоты процессорной шины растет не только частота памяти, ног и частоты на шинах PCI, Serial ATA, PCI-E или AGP. В какой-то степени это хорошо — тоже работает на ускорение работы. Но, при превышении этих частот номинального значения, компьютер может вообще перестать работать.
Номинальные значения частот шин PCI = 33.3 МГц, AGP = 66.6 МГц, SATA и PCI Express = 100 МГц и почти все новые чипсеты фиксируют штатные значения. Но, лучще подстраховаться — найти параметр AGP/PCI Clock и установить значение 66/33 МГц.
Это относится к чипсетам Intel для процессоров Pentium 4 и NVIDIA. Однако это не так для ранних чипсетов Intel, SiS и VIA не умеющих фиксировать значение частот на номинале. К примеру, если в материнской плате использован чипсет VIA K8T800, то вряд ли частота FSB превысит 225 МГц.
Частота шины, чипсетов NVIDIA для процессоров AMD с разьемом Socket 754/939, равна 800 или 1000 МГц и желательно ее уменьшить до 400 или 600 МГц.
Для этого необходимо разыскать параметр HyperTransport Frequency, или HT Frequency, или LDT Frequency.
Все выполненные настройки: уменьшение частоты памяти, шины HyperTransport и фиксация частот шин PCI и AGP на номинале относятся к подготовке к разгону. Осталось сохранить настройки: Save & Exit Setup или F10 и подтвердить нажатием Enter или ответом «Y» и приступить к разгону.
3.1. Прежде всего, находим раздел Frequency/Voltage Control.
На других системных плаптах параметр может называться POWER BIOS Features, или JumperFree Configuration, у ASUS, у ABIT носит название μGuru Utility.
В этих разделах искомый нами параметр может называться: CPU Host Frequency, или CPU/Clock Speed, или External Clock, или как-то по другому, но похожим именем. Этот параметр и управляет частотой FSB. Вот его и будем менять в сторону увеличения.
Насколько же увеличивать? Я не знаю. Все зависит от конкретного процессора, самой материнской платы блока охлаждения и питания. Для начала увеличить на 10 МГц. Сохранить изменения и загрузить Windows.
Запустить утилиту CPU-Z и убедиться, что процессор разгонался.
Проверить стабильность работы процессора и памяти программой S&M, или какой ни будь крутой игрушкой. Разумеется, что надо быть уверенным в стабильности работы с программой S&M, или этой игрой до разгона процессора. Проверить температуру процессора, она не должна превышать 60˚ по Цельсию, но чем меньше, тем лучше.
Если разгону подверглись Intel Pentium 4 и Celeron, то в обязательном порядке запустить утилиту RightMark CPU Clock Utility, что бы определить не впал ли процессор в тротлинг от перегрева. Разгон с таким эффектом не имеет никакого смысла. Утилита предупредит о начале троттлинга и надо будет улучшить охлаждение, или уменьшить разгон.
Если все в порядке, то нужно вернутся в BIOS и еще увеличить частоту и так до тех пор пока все работает стабильно. Как только проявятся симптомы переразгона (зависания, вылеты из программ, синие экраны или повышение температуры) – надо немедленно уменьшить частоту на величину последнего приращения.
Может и так, что перебрали с увеличением частоты, установили неприемлемые параметры, что-то не то сделали и системная плата даже не стартует, или запускается и виснет. Многие современные материнские платы отслеживает процесс старта и при неполадках стартует, заново устанавливая номинальные значения параметров для процессора и памяти. Если такого не произошло можно попробовать старт с нажатой клавишей Insert – плата, опять же, должна сбросить установленные параметры до номинала. Ничего не помогло?
Самое время вспомнить о перемычке Clear CMOS.
При выключенном питании снять перемычку, поставить ее на два соседних контакта на несколько секунд и вернуть на место. Переключение перемычки установит все параметры BIOSA принятые по умолчанию. Не нашли перемычку? Снимите аккумулятор, и BIOS забудет о ваших издевательствах и примет настройки по умолчанию.
Если уж разгон успешный, то осталось проверить частоту памяти и поднять ее и подобрать оптимальные тайминги. Менять надо все пошагово и после каждого шага тестировать систему. Не всегда, но увеличение напряжения питания процессора тоже способствует разгону, но повышает температуру. Так что лучше этого не делать.
HT Frequency
Возможные значения:
Описание:
Позволяет указать эффективную частоту или множитель (отношение эффективной частоты к частоте опорного тактового генератора) для шины HyperTransport, связывающей процессор AMD и чипсет.
Номинальная эффективная частота обмена данными по шине HyperTransport составляет 800 или 1000 МГц для процессоров Athlon (и Sempron на их основе) и 1600, 1800 или 2000 МГц для процессоров Phenom. Штатная частота опорного тактового генератора — 200 МГц. Чтобы получить частоту шины HyperTransport в 800 МГц, используется множитель 4x, 1000 МГц — 5x, 1600 МГц — 8x, 1800 МГц — 9x и 2000 МГц — 10x. При разгоне процессора множитель обычно уменьшают с таким расчетом, чтобы частота шины HyperTransport не превышала 1000 МГц для семейства Athlon и 2000 МГц для процессоров Phenom.
Поскольку контроллер памяти интегрирован непосредственно в эти процессоры, частота шины HyperTransport мало влияет на итоговое быстродействие системы.
Устанавливает эффективную частоту или множитель для шины HyperTransport, связывающей чипсет и процессор AMD.
Зачем разгонять процессор
Вообще-то и не зачем. Разгон процессора даст повышения производительности всей системы не более, чем на 20-70%, а в большинстве случаев до 30%, а это мало ощутимый результат в работе компьютера.
Тогда останутся два позитива от разгона:
— повышение своего рейтинга среди своих друзей пользователей;
— удовлетворение от выполненного эксперимента.
Главный подвижник разгона – это желание повысить производительность процессора без дополнительных материальных затрат.
Как бы, все эти хлопоты, позже не обошлись дороже!
Почему это возможно
Разгон процессора возможен по одной простой причине, заключающейся в том, что производитель закладывает некий запас прочности и этим ручается за надежность работы процессора в течение заявленного гарантийного срока.
Прежде всего, надо быть уверенным, что система работает без сбоев и подготовить ее для работы в режиме перегрузок. Не лишним будет заглянуть на сайт производителя материнской платы и проверить наличие новой версии BIOS. Обновленная версия может улучшить потенциальные разгонные характеристики. Выполнить резервное копирование всех тех данных, которыми дорожите.
- Свежие записи
- Нужно ли менять пружины при замене амортизаторов
- Скрипят амортизаторы на машине что делать
- Из чего состоит стойка амортизатора передняя
- Чем стянуть пружину амортизатора без стяжек
- Для чего нужны амортизаторы в автомобиле
- Правообладателям
- Политика конфиденциальности