Для различных изделий сложной формы и профиля, с наличием прорезей и отверстий очень трудно рассчитать вес, а это очень важный момент – для транспортировки, для расчета монтажных параметров, для конструкторской документации и других целей. Процесс взвешивания также представляет собой сложности, особенно, когда изделия крупногабаритные – например, трубы, валы, турбины, металлические или деревянные конструкции, изделия из бетона и железобетона и т.д., или же вес небольшой детали, но сложной конфигурации.
- Но, узнать точную массу таких изделий можно гораздо проще на нашем сайте
- Объём стенки цилиндра
- Онлайн калькулятор
- Зная оба радиуса (диаметра)
- Зная толщину стенки
- Теория
- Формулы
- Через радиусы или диаметры цилиндра
- Через толщину стенки цилиндра
- Пример №1
- Пример №2
- Расчет массы цилиндра — однородного и полого
- Что такое цилиндр?
- Объем и площадь поверхности
- Определение массы цилиндра
- Расчет массы медного цилиндра
- Однородный и полый цилиндры
- Расчет массы полого цилиндра
- Расчет массы цилиндра — однородного и полого
- Что такое цилиндр?
- Объем и площадь поверхности
- Определение массы цилиндра
- Расчет массы медного цилиндра
- Однородный и полый цилиндры
- Расчет массы полого цилиндра
- 📽️ Видео
Видео:Обучающий ролик: Как рассчитать объемный вес груза?Скачать
Но, узнать точную массу таких изделий можно гораздо проще на нашем сайте
Мы предлагаем Вашему вниманию универсальный интерактивный калькулятор массы для самостоятельного расчета массы изделий самой разной формы из материалов цилиндрической или листовой формы. Его особенность в том, что он позволяет узнать вес детали или изделия не только из металлопроката и сплавов, но и любых других материалов: дерева и МДФ, пластиков и полимеров, бумаги, картона, резины, бетона, кирпича. Сделать это можно просто внеся габаритные показатели детали с вычетом размеров отверстий и прорезей, а также, величину коэффициента плотности материала, из которого деталь изготовлена. Точные данные можно найти в представленной рядом таблице.
Масса цилиндрической детали рассчитывается следующим образом:
• В соответствующие поля калькулятора массы внести размерные показатели: диаметр, длину и справочную плотность материала – калькулятор рассчитает общую массу изделия.
• Второй шаг – если на изделии есть выступы, ступени – надо добавить их габариты.
• И третий шаг – вычесть размеры отверстий, выемок, прорезей.
• Результат – точная расчетная масса цилиндрической детали.
Масса детали из листа рассчитывается следующим образом:
• В соответствующие поля калькулятора массы внести размерные показатели: ширину, длину, толщину и справочную плотность материала – калькулятор рассчитает общую массу изделия.
• Второй шаг – если на изделии есть выступы – надо добавить их габариты.
• И третий шаг – вычесть размеры прямоугольных или круглых отверстий.
• Результат – точная расчетная масса детали из листа.
Наш калькулятор массы изделий будет полезен как конструктору, так и для заказчиков, ведь он позволяет очень быстро и почти со 100%-точностью получить необходимые данные относительно веса изделия без сложных математических расчетов и процедуры взвешивания.
Обратите внимание, что по умолчанию в калькуляторе стоит масса марки стали 40 ГОСТ 1050-88.
Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать
Объём стенки цилиндра
Видео:Цилиндр - расчёт площади, объёма.Скачать
Онлайн калькулятор
Найти чему равен объём полого цилиндра (Vст) можно зная (либо-либо):
- Высоту цилиндра h, внешний радиус r1 и внутренний радиус r2
- Высоту цилиндра h, внешний диаметр d1 и внутренний диаметр d2
- Высоту цилиндра h, внешний радиус r1 и толщину стенки δ
- Высоту цилиндра h, внутренний радиус r2 и толщину стенки δ
- Высоту цилиндра h, внешний диаметр d1 и толщину стенки δ
- Высоту цилиндра h, внутренний диаметр d2 и толщину стенки δ
Зная оба радиуса (диаметра)
Чему равен объём стенки цилиндра Vст если:
Внешний =
Внутренний =
Высота цилиндра h =
Ответ: Vст =
Зная толщину стенки
Чему равен объём стенки цилиндра Vст если:
=
Толщина стенки δ =
Высота цилиндра h =
Ответ: Vст =
Видео:Какой цилиндр скатится быстрее: сплошной или полый? Разбор задачи.Скачать
Теория
Чему равен объём полого цилиндра Vст если:
Формулы
Через радиусы или диаметры цилиндра
Vст = π ⋅ (r1² — r2²) ⋅ h , где r1 — внешний радиус, r2 — внутренний радиус , а h — высота
Через толщину стенки цилиндра
Vст = π ⋅ (d2 ⋅ δ + δ²) ⋅ h , где δ — толщина стенки цилиндра, d2 — внутренний диаметр, а h — высота
Читайте также: Переборка цилиндра навески мтз 80
Vст = π ⋅ ((d1 — 2 ⋅ δ) ⋅ δ + δ²) ⋅ h , где δ — толщина стенки цилиндра, d1 — внешний диаметр, а h — высота
Vст = π ⋅ (2 ⋅ r2 ⋅ δ + δ²) ⋅ h , где δ — толщина стенки цилиндра, r2 — внутренний радиус, а h — высота
Vст = π ⋅ ((2 ⋅ r1 — 2 ⋅ δ) ⋅ δ + δ²) ⋅ h , где δ — толщина стенки цилиндра, r1 — внешний радиус, а h — высота
Пример №1
К примеру, посчитаем каков объём металла в трубе, если её длинна 3 метра, внешний диаметр d1=5 см, а внутренний d2=4.5 см?
Vст = 3.14 ⋅ (( 5 /2)² — ( 4.5 /2)²) ⋅ 300 = 3.14 ⋅ (6.25 — 5.0625) ⋅ 300 ≈ 1119 см³
Пример №2
Теперь посчитаем объём металла в этой же 3-х метровой трубе, но возьмём внутренний радиус r2 = 2.25 см и толщину стенки δ = 0.25 см (при этом у нас должен получится тот же ответ, что и в предыдущем примере):
Vст = 3.14 ⋅ (2 ⋅ 2.25 ⋅ 0.25 + 0.25²) ⋅ 300 = 3.14 ⋅ 1.1875 ⋅ 300 ≈ 1119 см³
Видео:Что такое объёмный вес и как его рассчитатьСкачать
Расчет массы цилиндра — однородного и полого
Цилиндр является одной из простых объемных фигур, которую изучают в школьном курсе геометрии (раздел стереометрия). При этом часто возникают задачи на расчет объема и массы цилиндра, а также на определение площади его поверхности. Ответы на отмеченные вопросы даны в этой статье.
Видео:Объем цилиндраСкачать
Что такое цилиндр?
Перед тем как переходить к ответу на вопрос, чему равна масса цилиндра и его объем, стоит рассмотреть, что представляет собой эта пространственная фигура. Сразу необходимо отметить, что цилиндр — это трехмерный объект. То есть в пространстве можно измерить три его параметра по каждой из осей в декартовой прямоугольной системе координат. В действительности для однозначного определения размеров цилиндра достаточно знать всего два его параметра.
Цилиндр — это объемная фигура, образованная двумя кругами и цилиндрической поверхностью. Чтобы яснее представить этот объект, достаточно взять прямоугольник и начать вращать его вокруг какой-либо его стороны, которая будет осью вращения. В этом случае вращающийся прямоугольник опишет фигуру вращения — цилиндр.
Две круглые поверхности называются основаниями цилиндра, они характеризуются определенным радиусом. Расстояние между основаниями называется высотой. Два основания соединены между собой цилиндрической поверхностью. Линия, проходящая через центры обоих кругов, называется осью цилиндра.
Видео:Объём цилиндраСкачать
Объем и площадь поверхности
Как можно заметить из вышесказанного, цилиндр определяется двумя параметрами: высотой h и радиусом его основания r. Зная эти параметры, можно рассчитать все другие характеристики рассматриваемого тела. Ниже приводятся основные из них:
- Площадь оснований. Эта величина рассчитывается по формуле: S1 = 2*pi*r 2 , где pi — число пи, равное 3,14. Цифра 2 в формуле появляется потому, что цилиндр имеет два одинаковых основания.
- Площадь цилиндрической поверхности. Ее можно рассчитать так: S2 = 2*pi*r*h. Понять эту формулу просто: если цилиндрическую поверхность разрезать вертикально от одного основания к другому и развернуть, то получится прямоугольник, высота которого будет равна высоте цилиндра, а ширина будет соответствовать длине окружности основания объемной фигуры. Поскольку площадь полученного прямоугольника — это произведение его сторон, которые равны h и 2*pi*r, то получается представленная выше формула.
- Площадь поверхности цилиндра. Она равна сумме площадей S1 и S2, получаем: S3 = S1 + S2 = 2*pi*r 2 + 2*pi*r*h = 2*pi*r*(r+h).
- Объем. Эта величина находится просто, необходимо лишь умножить площадь одного основания на высоту фигуры: V = (S1/2)*h = pi*r 2 *h.
Видео:11 класс. Геометрия. Объем цилиндраСкачать
Определение массы цилиндра
Наконец, стоит перейти непосредственно к теме статьи. Как определить массу цилиндра? Для этого необходимо знать его объем, формула для вычисления которого была представлена выше. И плотность вещества, из которого он состоит. Масса определяется по простой формуле: m = ρ*V, где ρ — плотность материала, образующего рассматриваемый объект.
Понятие плотности характеризует массу вещества, которое находится в единице объема пространства. Например. Известно, что железо имеет большую плотность, чем дерево. Это означает, что в случае одинаковых объемов вещества железа и дерева первое будет иметь намного большую массу, чем второе (приблизительно в 16 раз).
Читайте также: Что делать если сорвало резьбу в блоке цилиндров
Видео:Расчет момента инерции цилиндраСкачать
Расчет массы медного цилиндра
Рассмотрим простую задачу. Необходимо найти массу цилиндра, сделанного из меди. Для определенности пусть цилиндр имеет диаметр 20 см и высоту 10 см.
Перед тем как приступать к решению задачи, следует разобраться с исходными данными. Радиус цилиндра равен половине его диаметра, значит r = 20/2 = 10 см, высота же составляет h = 10 см. Поскольку рассматриваемый в задаче цилиндр сделан из меди, то, обращаясь к справочным данным, выписываем значение плотности этого материала: ρ = 8,96 г/см 3 (для температуры 20 °C).
Теперь можно приступать к решению задачи. Для начала рассчитаем объем: V =pi*r 2 *h = 3,14*(10) 2 *10 = 3140 см 3 . Тогда масса цилиндра будет равна: m = ρ*V = 8,96 * 3140 = 28134 грамм или приблизительно 28 килограмм.
Следует обратить внимание на размерность единиц во время их использования в соответствующих формулах. Так, в задаче все параметры были представлены в сантиметрах и граммах.
Видео:КАК считать БЖУ? Сухая масса телаСкачать
Однородный и полый цилиндры
Из полученного выше результата можно видеть, что медный цилиндр с относительно малыми размерами (10 см) обладает большой массой (28 кг). Это связано не только с тем, что он сделан из тяжелого материала, но и с тем, что он является однородным. Этот факт важно понимать, поскольку приведенную выше формулу для расчета массы можно использовать только в случае, если цилиндр полностью (снаружи и внутри) состоит из одного и того же материала, то есть является однородным.
На практике же часто используют полые цилиндры (например, цилиндрические бочки для воды). То есть они сделаны из тонких листов какого-то материала, а внутри являются пустыми. Для полого цилиндра указанной формулой расчета массы пользоваться нельзя.
Видео:Урок 94. Вычисление моментов инерции телСкачать
Расчет массы полого цилиндра
Интересно рассчитать, какой массой будет обладать цилиндр из меди, если он является пустым внутри. Для примера пусть он будет сделан из тонкого медного листа толщиной всего d = 2 мм.
Чтобы решить эту задачу, нужно найти объем самой меди, из которой сделан объект. А не объем цилиндра. Поскольку толщина листа мала, по сравнению с размерами цилиндра (d = 2 мм и r = 10 см), тогда объем меди, из которой изготовлен предмет, можно найти, если умножить всю площадь поверхности цилиндра на толщину медного листа, получаем: V = d*S3 = d*2*pi*r*(r+h). Подставляя данные из предыдущей задачи, получим: V = 0,2*2*3,14*10*(10+10) = 251,2 см 3 . Массу полого цилиндра можно получить, если умножить полученный объем меди, который потребовался для его изготовления, на плотность меди: m = 251,2 * 8,96 = 2251 г или 2,3 кг. То есть рассмотренный полый цилиндр весит в 12 (28,1/2,3) раз меньше, чем однородный.
Видео:Расчёт массы и объёма тела по его плотности. Физика 7 классСкачать
Расчет массы цилиндра — однородного и полого
Цилиндр является одной из простых объемных фигур, которую изучают в школьном курсе геометрии (раздел стереометрия). При этом часто возникают задачи на расчет объема и массы цилиндра, а также на определение площади его поверхности. Ответы на отмеченные вопросы даны в этой статье.
Видео:ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРАСкачать
Что такое цилиндр?
Перед тем как переходить к ответу на вопрос, чему равна масса цилиндра и его объем, стоит рассмотреть, что представляет собой эта пространственная фигура. Сразу необходимо отметить, что цилиндр — это трехмерный объект. То есть в пространстве можно измерить три его параметра по каждой из осей в декартовой прямоугольной системе координат. В действительности для однозначного определения размеров цилиндра достаточно знать всего два его параметра.
Цилиндр — это объемная фигура, образованная двумя кругами и цилиндрической поверхностью. Чтобы яснее представить этот объект, достаточно взять прямоугольник и начать вращать его вокруг какой-либо его стороны, которая будет осью вращения. В этом случае вращающийся прямоугольник опишет фигуру вращения — цилиндр.
Две круглые поверхности называются основаниями цилиндра, они характеризуются определенным радиусом. Расстояние между основаниями называется высотой. Два основания соединены между собой цилиндрической поверхностью. Линия, проходящая через центры обоих кругов, называется осью цилиндра.
Видео:Выполнялка 115.Сплошной шар или полыйСкачать
Объем и площадь поверхности
Как можно заметить из вышесказанного, цилиндр определяется двумя параметрами: высотой h и радиусом его основания r. Зная эти параметры, можно рассчитать все другие характеристики рассматриваемого тела. Ниже приводятся основные из них:
- Площадь оснований. Эта величина рассчитывается по формуле: S1 = 2*pi*r2, где pi — число пи, равное 3,14. Цифра 2 в формуле появляется потому, что цилиндр имеет два одинаковых основания.
- Площадь цилиндрической поверхности. Ее можно рассчитать так: S2 = 2*pi*r*h. Понять эту формулу просто: если цилиндрическую поверхность разрезать вертикально от одного основания к другому и развернуть, то получится прямоугольник, высота которого будет равна высоте цилиндра, а ширина будет соответствовать длине окружности основания объемной фигуры. Поскольку площадь полученного прямоугольника — это произведение его сторон, которые равны h и 2*pi*r, то получается представленная выше формула.
- Площадь поверхности цилиндра. Она равна сумме площадей S1 и S2, получаем: S3 = S1 + S2 = 2*pi*r2 + 2*pi*r*h = 2*pi*r*(r+h).
- Объем. Эта величина находится просто, необходимо лишь умножить площадь одного основания на высоту фигуры: V = (S1/2)*h = pi*r2*h.
Читайте также: Осевого сечения равностороннего цилиндра это
Видео:Физика с нуля. Вес и масса. Есть ли разница?Скачать
Определение массы цилиндра
Наконец, стоит перейти непосредственно к теме статьи. Как определить массу цилиндра? Для этого необходимо знать его объем, формула для вычисления которого была представлена выше. И плотность вещества, из которого он состоит. Масса определяется по простой формуле: m = ρ*V, где ρ — плотность материала, образующего рассматриваемый объект.
Понятие плотности характеризует массу вещества, которое находится в единице объема пространства. Например. Известно, что железо имеет большую плотность, чем дерево. Это означает, что в случае одинаковых объемов вещества железа и дерева первое будет иметь намного большую массу, чем второе (приблизительно в 16 раз).
Видео:11 класс, 15 урок, Площадь поверхности цилиндраСкачать
Расчет массы медного цилиндра
Рассмотрим простую задачу. Необходимо найти массу цилиндра, сделанного из меди. Для определенности пусть цилиндр имеет диаметр 20 см и высоту 10 см.
Перед тем как приступать к решению задачи, следует разобраться с исходными данными. Радиус цилиндра равен половине его диаметра, значит r = 20/2 = 10 см, высота же составляет h = 10 см. Поскольку рассматриваемый в задаче цилиндр сделан из меди, то, обращаясь к справочным данным, выписываем значение плотности этого материала: ρ = 8,96 г/см3 (для температуры 20 °C).
Теперь можно приступать к решению задачи. Для начала рассчитаем объем: V =pi*r2*h = 3,14*(10)2*10 = 3140 см3. Тогда масса цилиндра будет равна: m = ρ*V = 8,96 * 3140 = 28134 грамм или приблизительно 28 килограмм.
Следует обратить внимание на размерность единиц во время их использования в соответствующих формулах. Так, в задаче все параметры были представлены в сантиметрах и граммах.
Видео:Как рассчитать вес металлического листа исходя из его габаритных размеров и толщиныСкачать
Однородный и полый цилиндры
Из полученного выше результата можно видеть, что медный цилиндр с относительно малыми размерами (10 см) обладает большой массой (28 кг). Это связано не только с тем, что он сделан из тяжелого материала, но и с тем, что он является однородным. Этот факт важно понимать, поскольку приведенную выше формулу для расчета массы можно использовать только в случае, если цилиндр полностью (снаружи и внутри) состоит из одного и того же материала, то есть является однородным.
На практике же часто используют полые цилиндры (например, цилиндрические бочки для воды). То есть они сделаны из тонких листов какого-то материала, а внутри являются пустыми. Для полого цилиндра указанной формулой расчета массы пользоваться нельзя.
Видео:Вес телаСкачать
Расчет массы полого цилиндра
Интересно рассчитать, какой массой будет обладать цилиндр из меди, если он является пустым внутри. Для примера пусть он будет сделан из тонкого медного листа толщиной всего d = 2 мм.
Чтобы решить эту задачу, нужно найти объем самой меди, из которой сделан объект. А не объем цилиндра. Поскольку толщина листа мала, по сравнению с размерами цилиндра (d = 2 мм и r = 10 см), тогда объем меди, из которой изготовлен предмет, можно найти, если умножить всю площадь поверхности цилиндра на толщину медного листа, получаем: V = d*S3 = d*2*pi*r*(r+h). Подставляя данные из предыдущей задачи, получим: V = 0,2*2*3,14*10*(10+10) = 251,2 см3. Массу полого цилиндра можно получить, если умножить полученный объем меди, который потребовался для его изготовления, на плотность меди: m = 251,2 * 8,96 = 2251 г или 2,3 кг. То есть рассмотренный полый цилиндр весит в 12 (28,1/2,3) раз меньше, чем однородный.
📽️ Видео
КАК ИЗМЕРИТЬ ЦИЛИНДРЫ? Учимся пользоваться нутромером и микрометромСкачать
Создание модели полого тела с боковым отверстиемСкачать