Бывают следующие случаи сечения поверхности прямого кругового цилиндра плоскостью:
1) окружность, если секущая плоскость Р перпендикулярна оси цилиндра, причем она параллельна основанию цилиндра (рис. 104а);
2) эллипс, если секущая плоскость Р не перпендикулярна и не параллельна оси цилиндра (рис. 104б);
3) пара прямых, если секущая плоскость Q содержит ось цилиндра или параллельна ей (рис. 104в).
Особый интерес представляет случай, когда наклонная секущая плоскость пересекает основание цилиндра (плоскость Р1 на рис. 104б). Здесь часть эллипса может быть неверно принята за параболу или гиперболу. Нужно знать, что ни парабола, ни гипербола не могут быть получены как сечение поверхности кругового цилиндра плоскостью.
На рисунке 105 показано пересечение поверхности цилиндра фронтально-проецирующей плоскостью Р. Здесь для цилиндра рассмотрено решение всех трех основных задач, связанных с сечением тела плоскостью, т. е. отыскание проекций сечения, его натурального вида и построение развёртки.
Проекции сечения. На рисунке 105а рассмотрено наглядное изображение сечения, а отсюда видно, что большая ось эллипса представлена хордой 0–6, которая пересекает ось цилиндра в точке С. При этом малая ось направлена по горизонтали, перпендикулярной в плоскости V. Следовательно, малая ось проектируется без искажения на горизонтальной и профильной плоскости (рис. 105б), а центр эллипса находится на оси цилиндра (точка С). Следует отметить, что на рисунке 105б ось симметрии проходит через точки 0–6.
Получающийся в горизонтальном сечении эллипс проецируется на плоскость в виде окружности основания, а на профильную плоскость – в виде эллипса. При этом большая ось эллипса 3˝-9˝ является проекцией малой оси 3–9 исходного эллипса, а малая ось 0˝-6˝ представляет собой проекцию большой оси 0–6. На фронтальной плоскости проекция эллипса есть отрезок 0́-6́, который равен большой оси самого эллипса.
Следовательно, в самом начале построения можно получить две готовые проекции сечения: горизонтальную и фронтальную. После этого нужно построить только профильную проекцию. Следует заметить, что точки 3˝ и 9˝ отделяют видимую часть кривой от невидимой на профильной проекции. Если секущая плоскость Р наклонена к плоскости основания цилиндра под углом 45°, то профильная проекция эллипса является окружностью. На рисунке 105 угол наклона секущей плоскости меньше 45°, вследствие этого профильная проекция большой оси представляет собой малую ось профильной проекции эллипса. В том случае, если бы угол наклона секущей плоскости был больше 45°, проекция большой оси была бы большой осью профильной проекции эллипса.
Построение натурального вида сечения. Сначала нужно отметить цифрами ряд точек на проекциях эллипса (на рис. 105 отмечено 12 таких точек), после чего следует начинать построение натурального вида сечения. Выполнить это можно двумя способами:
1) построением совмещения плоскости Р с горизонтальной плоскостью путем вращения ее около горизонтального следа Рh. На рисунке 105 совмещение построено слева от Рh и соответствующие точки отмечены цифрами с чертой сверху;
2) указанием 12 точек эллипса. При этом хорды, параллельные Рh, проецируются без искажения на горизонтальную плоскость, а расстояния между этими хордами проектируются на фронтальную плоскость. Вследствие этого проводят через точки следа Рv, которые отмечены цифрами, прямые, перпендикулярные Рv. Затем перпендикулярно этим линиям проводят ось симметрии данного эллипса. Вместе с крайними вспомогательными прямыми ее пересечение определит точки эллипса 0 и 6, т. е. концы большой оси. После этого от точек А, В и С следует отложить в обе стороны половины соответствующих хорд (Аl = а1, В2 = b2, С3 = с3).
В данном случае хорда 3–9 является малой осью эллипса.
Развертка. На рисунке 106 показано построение развертки боковой поверхности неусеченного цилиндра. Эта боковая поверхность в развернутом состоянии является прямоугольником, основание которого равно длине окружности (πD), а высота – образующей цилиндра.
Читайте также: Нет компрессии в двух цилиндрах что делать
В данном случае длина окружности заменена периметром вписанного правильного 12-угольника (рис. 106), после чего через соответствующие точки делений спрямленной окружности проведены образующие. При этом на каждой образующей отмечена ее точка встречи с плоскостью Р.
Видео:Начертательная геометрия_18_Сечение цилиндра проецирующей плоскостьюСкачать
Как рассечь цилиндр плоскостью
Контрольные задания по теме:
Рабочая тетрадь задача 68, задача 69
Цилиндром будет называться геометрическое тело, полученное при ограничении цилиндрической поверхности двумя параллельными плоскостями — основаниями цилиндра. Если в основании цилиндра лежит окружность, а образующая перпендикулярна основанию, то цилиндр называется прямым круговым.
Линия сечения строится также при помощи опорных точек — точек пересечения секущей плоскости с очерковыми образующими и осью цилиндра. Но необходимо взять также промежуточные точки для более точного построения линии сечения. На рисунке 49 показано построение проекций сечения цилиндра фронтально — проецирующей плоскостью S. Так как цилиндр является проецирующей поверхностью, то горизонтальная проекция сечения совпадает с секущей плоскостью и на профильной проекции получим эллипс. Точки 2 и 3 будут являться границей видимости линии сечения для профильной плоскости.
Натуральную величину сечения можно определить способом вращения. Ось вращения выбираем в точке 1 и вращаем секущую плоскость до положения, параллельного горизонтальной плоскости. На горизонтальной плоскости получим эллипс, который будет являться натуральной величиной сечения цилиндра.
Разверткой цилиндра является прямоугольник с высотой, равной высоте цилиндра, и длиной, равной длине окружности основания 2πR. Для того, чтобы построить развертку усеченной части, основание цилиндра делят на равные части, тем самым аппроксимируя цилиндрическую поверхность призматической. Разделим окружность основания на 12 равных частей и отложим их вдоль горизонтальной линии развертки, по вертикали отложим высоту цилиндра (рис. 50).
Затем на полученных образующих отметим высоты точек сечения. Пристроим окружность основания и натуральную величину сечения.
Конус — это геометрическое тело, полученное путем ограничения конической поверхности плоскостью. Если в основании конуса лежит окружность, а высота попадает в центр основания, то конус называется прямым круговым.
На рисунке 51 построено сечение конуса фронтально — проецирующей плоскостью. Точки сечения находим при помощи вспомогательных секущих плоскостей. Точки С и D являются границей видимости для профильной проекции сечения.
Натуральную величину сечения находим способом вращения. Ось вращения выбираем в точке D и поворачиваем секущую плоскость до положения, параллельного горизонтальной плоскости проекций. Из горизонтальных проекций точек проводим линии, перпендикулярные оси вращения. Натуральной величиной сечения будет являться эллипс.
Развертка конуса является круговым сектором с радиусом, равным длине образующей конуса и длиной дуги, равной длине окружности основания конуса. Делим основание конуса на 12 равных частей и откладываем их по дуге на развертке. Затем на соответствующих образующих нужно отложить натуральные величины высот точек сечения. Чтобы получить полную развертку усеченной части, пристраиваем основание и натуральную величину сечения. На рисунке 52 показано построение развертки конуса.
1. Как образуется цилиндрическая поверхность?
2. Если секущая цилиндр плоскость фронтально проецирующая, то где будут лежать горизонтальные проекции точек сечения?
3. Какими способами можно определять натуральную величину фигуры сечения?
4. Какой геометрической фигурой является развертка боковой поверхности цилиндра? Конуса?
5. Для чего нужно разбивать окружность основания на некоторое количество равных частей?
6. Как построить развертку конической поверхности?
7. Как получить из полной развертки поверхности развертку ее усеченной части?
© ФГБОУ ВПО Красноярский государственный аграрный университет
Видео:Видеоурок по математике "Цилиндр"Скачать
Как рассечь цилиндр плоскостью
Сечение цилиндра наклонной плоскостью
Этим уроком я открываю серию статей, посвященных построению линий пересечения простых тел вращения с наклонной плоскостью. Умение выполнять эти действия вам поможет не только решить одноименные задачи, но и будет серьезным подспорьем при нахождении натурального вида фигуры сечения сложных деталей. Ведь детали состоят из кусочков простых тел: конусов, цилиндров, параллелепипедов, сфер. Сегодня я научу вас строить линию пересечения плоскости с цилиндром. Исходное задание как правило имеет вид как на картинке слева от этого абзаца. Изображены два вида, дающие нам представление о том, что фигура является цилиндром вращения, а так же задается секущая плоскость, в моем случае это плоскость Pv.
Давайте попробуем предположить, что мы получим на каждом из трех видов? Определенно можно сказать, что вся линия пересечения на фронтальном виде сольется с прямой обозначающей секущую плоскость, а на горизонтальном виде, все точки пересечения будут лежать на окружности, которой задан цилиндр. Главный интерес данной задачи заключается в нахождении линии пересечения на третьем виде(на профильной проекции цилиндра). Вероятнее всего вы уже догадываетесь, что на третьем виде линия пересечения будет представлять собой эллипс. В частном случае, если секущая плоскость наклонена к цилиндру вращения под углом ровно 45 градусов, то в проекция сечения на третьем виде будет являться эллипсом с равными осями, т.е. эллипс выродится в окружность. Это был маленький кусочек теории, сейчас же предлагаю перейти к практическим построениям. Итак, перед нами цилиндр с заданной фронтально-проецирующей секущей плоскостью. Начнем с подготовки третьего вида. Он будет точно такой же как и главный вид:
Читайте также: Дэу матиз порядок зажигания 3 цилиндра
Первым делом давайте обозначим определяющие точки, которые можно найти сразу, без дополнительных построений. Определим точки 1′ и 2′. Горизонтальные проекции 1 и 2 лежат на пересечении образующей окружности с осью, а проекции 1» и 2» лежат на оси цилиндра. Это нужно либо понимать, либо поверить мне ?
Еще одна пара определяющих точек — точки 3 и 4. Определим их фронтальную проекцию, а потом найдем горизонтальную и профильную. Это не сложно:
Если бы наша задача была построить сечение в AutoCad, то на этом можно было бы остановиться, поскольку мы уже имеем 4 точки, определяющие оси эллипса. Но так как мы учимся чертить руками, то мы должны построить дополнительные точки, которые бы позволили нам с вами, не обладая точностью компьютера, максимально точно начертить линию пересечения.
Проведем вспомогательную секущую плоскость Q1. На фронтальной проекции в точке пересечения Q1 и Pv отметим точки 5′ и 6′. Снесем их по линии связи на горизонтальную проекцию, отметим там точки 5 и 6:
Теперь нужно построить профильные проекции 5» и 6». Отложим на фронтальной проекции влево от оси точку 6» на расстоянии равном удалению точки 6 от оси окружности на горизонтальной проекции. Эти соответствующие расстояния на рисунке ниже отмечены зелеными отрезками:
Чтобы построить точку 5» нужно выполнить ровно такие же действия. Нужно отложить аналогичное расстояние вправо от оси цилиндра. Соответствие размеров на профильной и горизонтальной проекции на рисунке ниже обозначено синими отрезками:
Проведем еще одну вспомогательную секущую плоскость — Q2. Мне нравится проводить вспомогательные плоскости симметрично относительно середины сечения — так во многих случаях удается сделать менее загруженный линиями чертеж. Т.е. я провел Q2 симметрично Q1 относительно точек 3′,4′. Полученные с ее помощью проекции точек 7 и 8 строим по аналогии с построениями проекций точек 5 и 6:
Мы ограничимся построением двух вспомогательных плоскостей и проведем эллипс по имеющимся точкам. Но на практике имеет смысл провести еще хотя бы по одной вспомогательной плоскости выше и ниже точки пересечения Pv с осью цилиндра. Особенно если вы не считаете себя мастером построения эллипса «от руки». Итак, завершающий этап: построение линии пересечения плоскости с цилиндром. Она имеет форму эллипса, строим его аккуратно соединяя точки. И последний штрих — на профильной проекции верхняя половина линии пересечения будет проходить за цилиндром, соответственно будет невидима. Что мы и обозначим штриховой линией.
В следующем уроке мы рассмотрим один из случаев построения линии пересечения конуса с плоскостью.
Вы можете сказать «спасибо!» автору статьи:
пройдите по любой из рекламных ссылок в левой колонке, этим вы поддержите проект «White Bird. Чертежи Студентам»
Читайте также: Ремонт главного тормозного цилиндра бмв е39
или запишите наш телефон и расскажите о нас своим друзьям — кто-то наверняка ищет способ выполнить чертежи
или создайте у себя на страничке или в блоге заметку про наши уроки — и кто-то еще сможет освоить черчение.
А вот это — не реклама. Это напоминание, что каждый из нас может сделать. Если хотите — это просьба. Мы действительно им нужны:
Автор комментария: ирина
Дата: 2012-05-29
Автор комментария: Михаил
Дата: 2012-05-30
Мне нужно вырезать эллипс в крыше для вывода металлической трубы, поэтому мне важнее начертить проекцию цилиндра на самой крыше. Спасибо.
Михаил! Ваша задача сводится к продолжению задачи о сечении цилиндра плоскостью. Необходимо найти натуральную величину получившегося сечения. Имея его на руках — распечатываем на формате соответствующего размера, вырезаем трафарет и накладываем в нужном месте на крышу. Останется обвести и произвести вырезание по полученной линии. На сайте есть урок, связанный с нахождением натуральной величины сечений, но там не разобрано построение сечений циллиндрических поверхностей. Ну а в целом — спасибо за доброе слово!
Автор комментария: sakha
Дата: 2012-08-01
Вопрос к практическому применению, понятно как изготовить шаблон верхней проекции сечения, но мне, как сварщику, непонятно как изготовить шаблон для торцовки труб. Объясните, пожалуйста. Спасибо.
Сергей, попробую предложить вам способ. Сразу оговорюсь, что вряд ли он наиболее удобный, но зато качество разметки должно получиться хорошим. Метод потребует выполнить построение развертки цилиндра с нанесением на него линии пересечения с плоскостью. Т.е. я предлагаю вам на чем либо (рубероид, упаковочная бумага, лист обоев и т.д.) построить развертку цилиндра, нанести на нее линию пересечения цилиндра с наклонной плоскостью, отрезать лишнюю часть и, приложив ее к трубе, обвести по краю. Получиться должно просто замечательно.
Думаю, идею вы поняли. Ну а реализация построения линии пересечения на развертке цилиндра — либо найдете, либо дождетесь — планирую написать соответствующую статью.
Всего наилучшего!
Автор комментария: Игорь
Дата: 2012-10-09
Автор комментария:
Дата: 2013-12-17
Автор комментария: препод по ИГ
Дата: 2014-12-14
линия пунктир(пункт по немецки точка)не показывает невидимую линию. Линия невидимого контура называется штриховая. ГОСТ 2.303
Вот! Всегда есть шанс, что кто-то не поленится найти неточность и поправит! Спасибо за замечание, исправляю!
Автор комментария: Надежда
Дата: 2016-01-09
Автор комментария: дмитрий
Дата: 2016-04-18
Спасибо, это понятно по начерт.геометрии, но хотелось бы сделать построение математическим путём, т.к. шаблон, плаз, очень большой. Если дадите буду благодарен.
Автор комментария: vlad
Дата: 2016-04-25
спасибо огромноое очень помогло вспомнил
Автор комментария: Злой Енот
Дата: 2016-09-29
Извиняюсь, Вы нарисовали бред, попробуйте построить по Вашему методу сечение цилиндра плоскостью с наклоном 45 и получите круг, а не эллипс ))))
Приветствую Злого Енота! ? Зачем строить? Это и так известно, будет круг. У меня написано: эллипс с равными осями. Частный случай. Эллипс выродится в круг. Возможно, нужно было прочитать еще пару строк? Или попробовать построить эллипс с равными осями?
Автор комментария: Борис
Дата: 2017-09-17
спасибо очень пригодилось!
Автор комментария: Никита
Дата: 2017-10-29
Здравствуйте! Подскажите как выполните такое же задание при условии что цилиндр проецируется в виде круга на профильную плоскость? Зарание спасибо.
Автор комментария: Михаил
Дата: 2020-09-02
Благлдарю!Много перелопатил информации,и в основном построенной на рекламе,а толком ничего путного,все вокруг да около,а вот зашел на Ваш сайт,сразу все стало на свои места.Ведь я где-то далеко помню,это было еще в школьные годы,и кого не спрашивал,никто дать толковую информацию так и не смог.С помощью Ваших уроков я вышел из положения,и теперь рекомендую Ваш сайт своим друзьям,знакомым.Ведь много людей занимаются строительством,и часто и густо выходят из того или иного положения методом втыка.Благодарю еще раз.
🎥 Видео
РТ_ПБ_61.1) Построить проекции линии пересечения цилиндра плоскостью частного положения.Скачать
усеченный цилиндр-ортогональные проекции-изометрия-разверткаСкачать
Построить сечение цилиндра с плоскостью общего положения.Скачать
Построение линии пересечения поверхности цилиндра с проецирующей плоскостиСкачать
Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)Скачать
Усеченный цилиндр: проекции сечения, изометрия, развертка поверхностиСкачать
Задание 38. Как построить УСЕЧЕННЫЙ ЦИЛИНДР. Построение НВ фигуры сечения. Часть 1Скачать
Начертательная геометрия. Пересечение прямых с поверхностями вращения. Задача 53гСкачать
Построение линии пересечения поверхности конуса с проецирующей плоскостьюСкачать
Как промерять плоскость Блока Цилиндров.Скачать
Цилиндр. Рассечение плоскостями. Урок 38.(Часть2.ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)Скачать
ТЕМА 3. ПРИНЦИПЫ ПЕРЕСЕЧЕНИЯ ЦИЛИНДРА И ШАРА С ПРЯМЫМИ ПЛОСКОСТЯМИСкачать
11 класс, 27 урок, Сечения цилиндрической поверхностиСкачать
Как нарисовать цилиндр, лежащий на горизонтальной плоскости. УрокСкачать
Взаимное пересечение поверхностей/ (способ секущих плоскостей)/ Задача 49./ Рабочая тетрадь.Скачать
Пересечение поверхностей полусферы и цилиндра. Пошаговое видео. Инженерная графикаСкачать
Построение проекций точек пересечения наклонного цилиндра прямой линиейСкачать
Цилиндр, вытянутый вдоль оси Z. Урок33.(Часть2.ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)Скачать